
BeastLink API Specification

The BeastLink API is the host component to communicate
between a host PC and AXI-4 peripherals inside a Xilinx 7
Series FPGA over USB using an Cypress FX3. The API is

supported on different operating systems. BeastLink
consists of a software library that is used in the host

application, drivers components, Cypress FX3 firmware
and an IP Core that is embedded in the FPGA design on

the target board.

 Free Edition☑

 Pro Edition☑

UG125 - BeastLink API
Specification (1.0) 02/26/18

www.cesys.com 1

BeastLink Features

BeastLink Features
BeastLink is a cross-platform framework to easily transfer data between a PC and AXI-4
peripherals without need to understand any component in between. This means, no knowledge
of USB access on the host side, including drivers, USB transfers, Cypress FX3 firmware or the
interface between Cypress FX3 and the Xilinx 7 Series FPGA is required. Just connect the
Xilinx 7 Series FPGA to the Cypress FX3 as documented on your own hardware design, add
our IP Core into your Xilinx Vivado design suite project and transfer data between host and AXI-
4 peripherals with few lines of source code. Consult the individual documents for specific
information.
It provides numerous advantages to system designers and end-users:

● Unique cross-platform access layer to supported hardware

● Transparency of the underlying bus system functionality

● Hide the complexity of system- and bus-specific implementations

● No throughput-reduction of the subjacent bus system

● Support for different programming languages (C, C++, Python and all .NET and JVM
languages)

The most important functionalities of BeastLink are:

● Simple device enumeration and access

● Address based communication with the AXI-4 bus

● Consistent error handling

● Serialized access to components

BeastLink is designed to operate on Microsoft © Windows and Linux.

API design
With only one exception, the API has a nearly identical interface to all supported programming
languages. There are only minor differences based on specific language features and to stay
compatible with the respective coding guidelines (e.g. case conventions). Devices can easily be
accessed in an object orientated manner. Each enumerated hardware device is enumerated by
the API as instance of class Device. This class has functionality to handle all supported
features.

The only difference is C, which has no object orientated features. The C interface directly uses
the core layer without the need for a different abstraction. All other languages have a thin layer
between application and core API.

UG125 - BeastLink API
Specification (1.0) 02/26/18

www.cesys.com 2

BeastLink Features

Thread safety
The API is designed to be thread safe. Global functionality and device access is exclusively
locked. The only exceptions are functions that are device related. They have a shared lock, so
different threads can independently communicate with different devices.

UG125 - BeastLink API
Specification (1.0) 02/26/18

www.cesys.com 3

Using BeastLink API with Microsoft © Windows

Using BeastLink API with Microsoft © Windows
BeastLink is tested and supported on Windows 7 x64 and Windows 10 x64. Windows Vista, 8
and 8.1 as well as all 32 bit versions should be compatible as well, but are not officially
supported.

The core API component of BeastLink is available as 32 and 64 bit binary. Usage depends on
the used compiler or framework, not the OS architecture. All programming languages with
exception to C/C++ decide at runtime, which library is used (which depends on the bitness of
their used virtual machine). Libraries are named beastlink-1.0-x86.dll and beastlink-1.0-
x86_64.dll. This file must be available at runtime in one of Windows shared library loading
locations.

Driver and service
On Windows systems, Microsoft © WinUSB is used as driver for USB devices. This guarantees
compatibility on all supported Windows versions. The driver installation is a configurable
component of the BeastLink framework.

The service is used to download the Cypress FX3 firmware on device connection. This is done
by hooking onto a device connection event. If a known USB device is connected to the PC
(based on the service configuration file), the respective firmware is downloaded and the device
is rebooted using a masked PID.

UG125 - BeastLink API
Specification (1.0) 02/26/18

www.cesys.com 4

Using BeastLink with Linux

Using BeastLink with Linux
BeastLink is tested and officially supported on the latest official LTS version of Ubuntu Desktop,
x86_64. Other Linux distributions and version are expected to be compatible as well.

The core API component of BeastLink is a shared library called libbeastlink-1.0.so. This file
must be in one of the paths that is search for shared libraries. One common possibility is to put
the file into the startup library of the application and extend LD_LIBRARY_PATH to this
directory.

Driver and udev-rule
All communication on Linux systems is done using libusb 1.x. This grants compatibility to nearly
all Linux derivatives which offer this interface. No specific driver module is required, all things
are handled in user space.

To use the devices on Linux systems, a udev rule must be installed, which is responsible for two
important tasks:

● Non-root users get access to the devices, the rule sets the permission for all devices to 666
(rw-rw-rw-).

● Upon connection of a device, a firmware download tool is called, which downloads the
firmware to the Cypress FX3 and reboots the device. Without this firmware, the devices are
not usable.

The installation of this rule is done using shell script install-usb.sh which must be started as
root user. This installs the rule as 99-beastlink-permissions.rules into the user specified udev
rule directory. The install script creates a script called uninstall.sh, which removes to rules from
the system.
If the installation path changes, please update the rule!

UG125 - BeastLink API
Specification (1.0) 02/26/18

www.cesys.com 5

BeastLink API

BeastLink API

Important files

API Path Description

C

c/example.c Example for C API.

c/lib/* Files required for linking when using Microsoft Visual C++ (2015 or higher).

c/include/beastlink.h Header for C API.

C++

c++/example.cpp Example for C++ API.

c++/lib/* Files required for linking when using Microsoft Visual C++ (2015 or higher).

c++/include/beastlink.h Header for C API.

c++/beastlink++.h Header file for C++ API.

c++/beastlink++.cpp C++ API implementation. Must be included in C++ projects the use BeastLink.

JVM

jvm/beastlink-1.0.jar The library layer for JVM. Example in Java included.

jvm/beastlink-1.0-sources.jar Sources for the JVM interface, written in Java.

NET

net/example/* Example for .NET API in C#.

net/api/* C# sources for the NET interface, written in C#.

Python

python/example.py The python example.

python/beastlink.py Library layer for Python. Compatible with Python 2.x and 3.x.

BeastLink language support
BeastLink supports different programming languages. The core layer is a shared library, which
is a .dll file on Windows and a .so file on Linux. It offers all functionality as functions using
standard types. New languages can be added using a thin language specific layer. The main
design goal was to offer a similar interface for each programming language by preserving the
idioms and conventions of the language in question. Except the C interface, all languages
access the functionality in an object-oriented manner. The OS-specific runtime files must be
accessible at run-time for all used programming languages. It is recommended to take a look at
the example which is available for every supported language. They are well documented and
show most features of the API.

C

Language specific

The C interface is the only one that accesses the core layer directly. All functions are prefixed

UG125 - BeastLink API
Specification (1.0) 02/26/18

www.cesys.com 6

BeastLink API

with Bl, constants are prefixed using BL. Most functions return an error code which should be
checked in any case. If an error has been detected, the error reason can be retrieved from
BlGetLastErrorText(). As this interface does not offer object orientated design, devices are
referenced using a handle. The handle is retrieved when opening a device and must be used
subsequently to specify the device in question until BlClose() is called.

Build

BeastLink can be used by including beastlink.h into the project. When using Visual Studio on
Windows, beastlink-1.0-x86.lib must be added as link library for 32 bit programs and
beastlink-1.0-x86_64.lib for 64 bit programs. For Linux, the shared library libbeastlink-1.0.so
must be used in the linking stage.

Object-orientated languages
C++, Python and all .NET and JVM languages offer the possibility to use the BeastLink interface
using objects. Besides minor differences, all have the same interface. The following table shows
the types relevant for the API user:

BeastLink API types

DeviceInfo Offers various information about the device it is mapped to.

EnumeratedDevice This type is returned for every device found during enumeration. They are only valid until
a new enumeration is started.

Device Returned from EnumeratedDevice.open(). The object to interact with the hardware.

LibraryInterface As the .NET and JVM framework do not directly support any global methods, this type
contains global functionality, which are functions in C++ and Python.

C++

Language specific

Language compatibility: C++14

Official supported compilers: Visual C++ 2015 (Windows), G++ >= 5.4.0 (Linux)

The C++ interface is compatible to C++14 and uses elements of the standard template library
(STL) wherever suitable. All functionality is encapsulated in namespace beastlink to not
interfere with other API's. Error handling is done using exceptions. Whenever the core layer
reports an error, the C++ layer reads the textual reason and throws a std::exception.

Build

BeastLink can be used by adding beastlink++.cpp into the project. The interface is accessible
by including beastlink++.h wherever required. When using Visual Studio on Windows,

UG125 - BeastLink API
Specification (1.0) 02/26/18

www.cesys.com 7

BeastLink API

beastlink-1.0-x86.lib must be added as link library for 32 bit programs and beastlink-1.0-
x86_64.lib for 64 bit programs. For Linux, the shared library libbeastlink-1.0.so must be used
in the linking stage.

JVM

Language specific

Language compatibility: Java SE 8 or higher

The JVM interface is written in Java and included as pre-built jar. The JNA library is used to
interact with the core API at runtime.
All errors are reported using java.io.IOException.
The JVM port has a special method to load an FPGA design directly from the .jar to the device:
Device.programFpgaFromResource().

Build

Just add beastlink-1.0.jar to your project. In addition JNA library must be available as well.

NET framework

Language specific

Language compatibility: .NET framework 3.5 and higher

The interface is written in C# but usable with all .NET compatible languages. The wrapper is
successfully tested with mono, which allows cross-platform development.
Errors are reported using System.IO.IOException.
Wherever suitable, properties are used instead of Get/Set methods. In comparison to the other
languages, Pascal case is used for method names to preserve the CLR guideline.
The API can be built with the free Community versions of Visual Studio and Mono.

Build

Add beastlinknet-1.0.jar to the application that is using BeastLink.

UG125 - BeastLink API
Specification (1.0) 02/26/18

www.cesys.com 8

https://github.com/java-native-access/jna
https://github.com/java-native-access/jna

BeastLink API

Python

Language specific

Language compatibility: Both 2.x and 3.x branches.

Errors are reported by raising an Exception.

General API overview
The following table lists all API functions and their relation across all supported programming
languages.

The functions are grouped into 3 categories:

● Global, device independent functions like API initialization, cleanup, error handling and
device enumeration.

● Device related functions like device preparation and data transfer.

● Device information functions to access device data like serial number and user ID.

Global, device independent functions

These functions are either global (C++, Python) or reside statically in class LibraryInterface
(JVM, .NET).

C C++, JVM, Python .NET

BlGetLastErrorText

BlGetVersion getUdkVersion UdkVersion

BlInit init Init

BlEnumerate enumerate Enumerate

BlCleanup cleanup Cleanup

BlSetLogLevel setLogLevel SetLogLevel

Device related functions

These functions reside in class Device, except open() which is member of class
EnumeratedDevice.

C C++, JVM, Python .NET

BlOpen open Open

BlClose close Close

BlReadRegister readRegister ReadRegister

BlWriteRegister writeRegister WriteRegister

BlReadBlock readBlock ReadBlock

UG125 - BeastLink API
Specification (1.0) 02/26/18

www.cesys.com 9

BeastLink API

C C++, JVM, Python .NET

BlWriteBlock writeBlock WriteBlock

BlResetFpga resetFpga ResetFpga

BlProgramFpgaFromBin programFpgaFromBin ProgramFpgaFromBin

BlProgramFpgaFomMemory programFpgaFromMemory ProgramFpgaFromMemory

BlSetTimeout setTimeout SetTimeout

Device information functions

These functions reside in class DeviceInfo.

C C++, JVM, Python .NET

BlSetUserId setUserId UserId

BlGetUserId getUserId UserId

BlGetDerivateInfo getDerivateInfo DerivateInfo

BlGetDerivateId getDerivateId DerivateId

BlGetSerialNumber getSerialNumber SerialNumber

BlGetFirmwareVersion getFirmwareVersion FirmwareVersion

UG125 - BeastLink API
Specification (1.0) 02/26/18

www.cesys.com 10

Lifecycle of an application using BeastLink

Lifecycle of an application using BeastLink
If not explicitly stated, the method names in this chapter are used from C++, JVM and Python.

Initialization
The first task to do is the initialization of the API. This calls startup code of the underlying
frameworks. Without doing this, functionality of the API is not granted. So calling init() should be
the first thing using BeastLink.

Enumeration and Open
Devices can now be enumerated. With the exception of C, this is simply done calling
enumerate(), which returns a list of devices found in the system. Devices returned are only
those who are not already opened (system wide). This method expects vendor and product ID
(VID, PID) of the USB devices to search for. The returned list contains elements of type
EnumeratedDevice*. This type can be understand as a possible "device candidate".
Calling the **EnumeratedDevice.open() method tries to connect to the device and returns an
instance of type Device in case of success. The invocation of EnumeratedDevice.open() can
fail, if a different application has opened the device in the time between enumeration and
opening it (or the device has been unplugged between these calls).
This process can be done for multiple devices. If a new enumeration is done using
enumerate(), all previous instances of EnumerateDevice are invalid. Instances of type Device
are not affected!

[C specific] In C, an enumeration is done calling BlEnumerate(), which returns the count of
"device candidates". BlOpen() returns the handle for subsequent usage. This enumeration is
shown in the example application (example.c). If BlEnumerate() is called again, the count and
enumeration ID's from a previous call are invalid. Handles returned by BlOpen() are not
affected!
At this point, all previously unavailable information (user ID, serial number size, derivate info
and ID) can be accessed (through Device.getDeviceInfo()).

UG125 - BeastLink API
Specification (1.0) 02/26/18

www.cesys.com 11

Lifecycle of an application using BeastLink

FPGA Configuration
Device communication can be done using the Device instance [C language: handle]. To
configure an FPGA with a configuration bitstream from the host, one of the possible
Device.program*() methods should be used (Device.programFpgaFromBin() or
Device.programFpgaFromMemory(). The file format for FPGA-Designs is .bin (not .bit !). In
Xilinx Vivado design suite, the .bin file can be generated by selecting the “-bin_file*” option
under “Flow Navigator/PROJECT MANAGER/Settings/Bitstream”. If Vivado TCL Console is
being used to generate a bitstream, then the option “-bin_file” must be added to the
“write_bitsream” command.

If an FPGA design is already loaded (using JTAG or loaded from flash), a call to
Device.resetFpga() must be done to synchronize communication with the host. Without an
active FPGA design, data transfer will time out.

Read and Write
Data transfer with the AXI-4 peripherals is done using Device.readBlock() and
Device.writeBlock(). The addresses, sizes and flags must match the implementation inside the
FPGA. Device.readRegister() and Device.writeRegister() are convenience methods that
transfer 4 bytes of data using the same mechanics and offer the input and output value as 32 bit
unsigned integer. If a transfer takes longer than the time specified using Device.setTimeout(), it
is recognized as failed. Under some circumstances (e.g. transfer to slow peripherals), this value
must be adjusted. The default value is 1000 milliseconds. If the connection to the device gets
lost (e.g. unplug), the next call to one of these communication methods will fail, there's no other
way to get informed about unplugging.

Close Device
If the device communication isn't needed anymore, calling Device.close() will close the
connection and make the device available for new enumerations again.

A call to cleanup() will close all devices and completely cleanup all internal structures. It is
possible to start with init() at this point again.

UG125 - BeastLink API
Specification (1.0) 02/26/18

www.cesys.com 12

Revision history

Revision history

Version Date Comment Author Approved

1.0 Feb, 26 2018 Initial release th mr

UG125 - BeastLink API
Specification (1.0) 02/26/18

www.cesys.com 13

Copyright Notice

Copyright Notice
This file contains confidential and proprietary information of Cesys GmbH and is protected
under international copyright and other intellectual property laws.

Disclaimer
This disclaimer is not a license and does not grant any rights to the materials distributed
herewith. Except as otherwise provided in a valid license issued to you by Cesys, and to the
maximum extent permitted by applicable law:

(1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND WITH ALL FAULTS, AND
CESYS HEREBY DISCLAIMS ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED,
OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY,
NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE;
and
(2) Cesys shall not be liable (whether in contract or tort, including negligence, or under any
other theory of liability) for any loss or damage of any kind or nature related to, arising under or
in connection with these materials, including for any direct, or any indirect, special, incidental, or
consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or
damage suffered as a result of any action brought by a third party) even if such damage or loss
was reasonably foreseeable or Cesys had been advised of the possibility of the same.

CRITICAL APPLICATIONS
CESYS products are not designed or intended to be fail-safe, or for use in any application
requiring fail-safe performance, such as life-support or safety devices or systems, Class III
medical devices, nuclear facilities, applications related to the deployment of airbags, or any
other applications that could lead to death, personal injury, or severe property or environmental
damage (individually and collectively, "Critical Applications"). Customer assumes the sole risk
and liability of any use of Cesys products in Critical Applications, subject only to applicable laws
and regulations governing limitations on product liability.

THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS PART OF THIS FILE
AT ALL TIMES.

Address
CESYS Gesellschaft für angewandte Mikroelektronik mbH
Gustav-Hertz-Str. 4
D - 91074 Herzogenaurach
Germany

UG125 - BeastLink API
Specification (1.0) 02/26/18

www.cesys.com 14

	BeastLink Features
	API design
	Thread safety

	Using BeastLink API with Microsoft © Windows
	Driver and service

	Using BeastLink with Linux
	Driver and udev-rule

	BeastLink API
	Important files
	BeastLink language support
	C
	Language specific
	Build

	Object-orientated languages
	C++
	Language specific
	Build

	JVM
	Language specific
	Build

	NET framework
	Language specific
	Build

	Python
	Language specific

	General API overview
	Global, device independent functions
	Device related functions
	Device information functions

	Lifecycle of an application using BeastLink
	Initialization
	Enumeration and Open
	FPGA Configuration
	Read and Write
	Close Device

	Revision history
	Copyright Notice
	Disclaimer
	CRITICAL APPLICATIONS
	Address

