
CEBO
Programming Reference

This document describes .NET, C++, Java, and Python
interfaces for the Cebo-MSR API (Cebo-LC and Cebo-
Stick).
It contains general information, examples and library
interfaces for each of the supported languages.

UG111 (v1.2) Sep 26, 2017 www.cesys.com 1

Programming Interface

Programming Interface
The following chapters describe the CeboMsr API in all supported programming
languages. All language sections contain examples that show different usages of the
API, starting by very basic things up to more complex features. Every language section
is finished using a reference of all components.

API Stack
The API consists 3 different layers. From the API-user perspective, only the top layer
must be known. To get a better understanding, the image below shows a simplified
diagram of the stack.

The lowest layer varies from system to system and offers a unique USB interface to the
upper components.
The component in the middle is responsible to offer a unique, flexible interface to
different device types, using the lowest layer for device communication.
The different implementations on top of the stack are just thin layers offering the
functionality of the middle layer in their respective language. The API's are designed to
be easy and intuitive to use, as well as best tailored for the language in question.
Never try to build upon the middle layer directly, this interface is permanently subject to
change, so any update may break compatibility.

Thread safety
All API calls are internally locked by an API managed mutex, so the API can be used in
any multi-threaded context without additional locking mechanisms. This means, if one
thread enters one function of the CeboMsr API, all other threads using the interface
must wait until the first thread returns from its call.
In conclusion, blocking calls prevent other threads from calling API functions, which can
be an unwanted feature. To prevent this, the following must be bear in mind:

UG111 (v1.2) Sep 26, 2017 www.cesys.com 2

Programming Interface

The only long call is readBlocking() of class Device, which lasts until the requested
amount of data is read from the device. In this case, method readNonBlocking()
should be used instead.
Besides that, it's always a good idea to use one device in one single thread only.

Application flow
The application flow is quite easy:

The first task is to call the enumerate() method of class LibraryInterface. This returns
a list of possible devices, each instanced as class Device. Only devices that are not
already opened are reported.

Before working with one of the devices, method open() must be called. This can be
done with every reported device.

Devices can now be used in any way. If one of the method calls report an error, it may
be necessary to close and maybe reconnect the device (e.g. communication error). But
this highly depends on the error.

If the device is not needed anymore, method close() must be called. Subsequent calls
to enumerate() report the closed device again from now one (except it is disconnected).

UG111 (v1.2) Sep 26, 2017 www.cesys.com 3

.NET

.NET
The .NET API is written in C# and is a thin layer on top of the CeboMsr API. It uses
Platform Invoke to use the dynamic link library.

Compatibility

The API is designed so it can be compiled for framework 2.0. Newer frameworks should
work as well. The complete source of the API is distributed as part of the API and can
be build for different frameworks.
The API is available to any .NET compatible language.

Usage
Simply add cebomsrnet-{ver}.dll as reference to your project. This works for both 32
and 64 bit applications. Be sure to have cebomsr-{ver}-{arch}.dll (and its
dependencies) in the runtime path when starting the application, otherwise an exception
is thrown.

UG111 (v1.2) Sep 26, 2017 www.cesys.com 4

.NET

Design Difference
In comparison to the other language interfaces, the .NET API uses properties where
possible, while the other API's use get/set methods. One of the main reasons for this
decision was, using properties, you can inspect the values during a debug session:

Error Handling
Any logical or runtime error that is reported by the CeboMsr API is transformed to an
exception. The following table lists all possible exception thrown by the .NET
implementation of the CeboMsr API:

Exception Circumstances

ArgumentException If any of the used parameters has an invalid value in the current context.

IndexOutOfRangeExce
ption

When using an invalid index. (Most of these are prevented due to the API
design).

InvalidOperationExcept
ion

Thrown if something is called which is not allowed in this stage.

IOException Indicates an unexpected behavior like communication problems with the
device.

As seen in the table above, all exceptions but IOException are unchecked exceptions,
so they are predictable at development time. In the case of IOException, human
investigation may be required to clarify the reason of the problem.
All exceptions contain a textual description of the problem.

UG111 (v1.2) Sep 26, 2017 www.cesys.com 5

.NET

Basics
This section describes the first steps that are necessary to use the API. We start by
showing a basic example that:

• searches for all known devices

• grabs the first available device

• opens the device

• resets its state

• closes the device

using CeboMsrNet;

...

// Search for devices ...
IList<Device> devices = LibraryInterface.Enumerate(DeviceType.All);

// If at least one has been found, use the first one ...
if (devices.Count > 0)
{
 Device device = devices[0];

 // Open device, nothing can be done without doing this.
 device.Open();

 ...

 // After some processing, the device can be resetted to its
 // power up condition.
 device.ResetDevice();

 ...

 // Finalize device usage, this free's up the device, so it can be used
 // again, including other applications.
 device.Close();
}

Description

The first lines in the example import the complete namespace to the source unit.

In the application flow, enumeration must be always the first task when using the API. It
searches the system for known, not yet used devices and offers the caller a list of

UG111 (v1.2) Sep 26, 2017 www.cesys.com 6

.NET

device instances. The parameter that is used calling Enumerate() of LibraryInterface
specifies which devices should be searched:

• All known devices (DeviceType.All)

• Device classes (e.g. DeviceType.Usb)

• Specific types (e.g. DeviceType.CeboLC)

•

We search for all devices in the example above. The returned list contains candidates of
type Device that can be used subsequently.

We check if Count of the list is greater than zero to see if at least one device has been
found. If a device has been found, the if branch is entered, were we continue by using
the first device.

The call to Open() flags the device for use. Any new enumeration (before
calling Close() on the same instance) will filter this instance. This is just a simple
mechanism to prevent double access to the same device.

After the device has been opened, it can be used in any way. Method ResetDevice() is
shown here, because it has a superior role. It stops all active processing inside the
device and resets all configuration values to their startup condition. It is not necessary to
call it, but is a good way to reach a defined state i.e. in an error condition. It is implicitly
invoked when calling Open().

At the end of the current scope, method Close() is called to signal API and system that
the device is not used anymore. This is an important call, because leaving it in opened
state will prevent it from getting enumerated again.

UG111 (v1.2) Sep 26, 2017 www.cesys.com 7

.NET

Single Value I/O
This section describes simple single input and output of values. It continues the
example from section Basics, so an opened device instance is available. Single value
I/O is described in detail in the CEBO-LC manual (data acquisition, single value I/O).

// Read digital port #0 and write result to digital port #1 (mirror pins).
// At first, we need references to both ports.
DigitalPort dp0 = device.DigitalPorts[0];
DigitalPort dp1 = device.DigitalPorts[1];

// Configure port first, all bits of digital port #0 as input (default)
// and all bits of digital port #1 as output.
dp1.OutputEnableMask = 0xff;

// Read from #0 ...
int value = dp0.Value;

// Write the value to #1 ...
dp1.Value = value;

// Now some analog I/O, do it without any additional local references.
// Read single ended #0 input voltage ...
float voltageValue = device.SingleEndedInputs[0].Value;

// Write value to analog output #1
device.AnalogOutputs[1].Value = voltageValue;

Description

If you want work with device peripherals, get instances using the various component
properties of class Device. If more then one method must be called, create a local
reference, this reduces the amount of code to write. After you have an instance,
invocations to its methods affects this specific peripheral.

The example outlines how to read all I/O's of digital port #0 and mirror the result on port
#1. The first requirement to accomplish this is to define the direction of the individual
I/O's. By default, all I/O's are configured to be inputs, so the example shows how to set
all I/O's on port #1 as output, modifying OutputEnableMask on its reference. All bits that
are '1' in the specified mask signal the I/O to be an output. This is all you have to do for
configuration.

UG111 (v1.2) Sep 26, 2017 www.cesys.com 8

.NET

The mirroring step is quite easy, read the Value from the instance that represents port
#0 and store it in a local integer. The result is subsequently used writing it as Value on
the instance the represents port #1.

The second half of the example outlines how to access peripherals without local copies
or references. This requires fewer but longer lines of code but has no behavioral
difference. Choose which style you prefer on your own.

The example continues doing direct single value I/O using analog peripherals. Like the
digital port part, an input is mirrored to an output.

The Value read from the input is the calibrated voltage value. Assigning it to
the Value property of the AnalogOutput instance that represents analog output #1 will
directly modify the real output on the device.

Single Frame Input
This section presents an example that samples a selection of inputs in a single process.
The difference to single value read is not that much on the coding side, but there's a
large improvement when it comes to performance. Reading more than one input costs
only an insignificant higher amount of time in comparison to single I/O.
Configuration of the individual peripherals is exactly the same, so setting the I/O
direction if digital ports or set the input range on an analog input is almost identical.

// Prepare and fill the list of inputs to read.
IInput[] inputs = new IInput[]
{
 device.SingleEndedInputs[0],
 device.SingleEndedInputs[1],
 device.DifferentialInputs[1],
 device.DigitalPorts[0],
 device.DigitalPorts[1],
 device.Counters[0]
};

// Setup device with this selection.
device.SetupInputFrame(inputs);

// Read the values multiple times and write them to the console.
for (int i = 0; i < 100; ++i)
{

UG111 (v1.2) Sep 26, 2017 www.cesys.com 9

.NET

 // Read all inputs into the instance of InputFrame.
 InputFrame inFrame = device.ReadFrame();

 // Write results to the console.
 Console.WriteLine(
 "DigitalPort #0: " + inFrame.GetDigitalPort(0) + ", " +
 "DigitalPort #1: " + inFrame.GetDigitalPort(1) + ", " +
 "SingleEnded #0: " + inFrame.GetSingleEnded(0) + " V, " +
 "SingleEnded #1: " + inFrame.GetSingleEnded(1) + " V, " +
 "Differential #1: " + inFrame.GetDifferential(1) + " V, " +
 "Counter #0: " + inFrame.GetCounter(0));
}

Description

The primary work for frame input I/O is to setup the device with the list of inputs that are
involved. An array which contains the inputs to sample is required.
The example does this in the upper part. It creates the array and add several inputs to
it:

• Single ended analog input #0 and #1

• Differential analog input #1

• Digital ports #0 and #1

• Counter #0

This list is than used calling SetupInputFrame(), which prepares the device with this
setup. This is active until:

• A call to ResetDevice()

• The device is closed

• Or a new list is specified
In the subsequent loop, the specified inputs are sampled in every loop cycle using
method ReadFrame(). The call lasts until all inputs are sampled and returns the values
immediately in an instance of class InputFrame.
This instance holds all sampled values and offers methods to request them, which is
shown in the lower part of the example.

Single Frame Output
In this section, concurrent modification of outputs will be outlined. In comparison to
single value I/O, this technique is very efficient when working with more than one single
output. As you can see in the following example, using it is quite straightforward.

UG111 (v1.2) Sep 26, 2017 www.cesys.com 10

.NET

// Write to analog out #1 and digital out #2 in one call.

// Prepare and set output selection.
IOutput[] outputs = new IOutput[]
{
 device.DigitalPorts[2],
 device.AnalogOutputs[1]
};

// Prepare device ...
device.SetupOutputFrame(outputs);

// Create instance of OutputFrame. There's no direct construction, as this
// instance may vary between different device types.
OutputFrame outFrame = device.CreateOutputFrame();

// Write it to hardware, modify contents in every looping.
for (int i = 0; i < 100; ++i)
{
 outFrame.SetAnalogOutput(1, (float)(3 * Math.Sin((float)i / 100.0f)));
 outFrame.SetDigitalPort(2, i);

 device.WriteFrame(outFrame);
}

Description

First of all, the example assumes that an opened instance of class Device is available,
as well as that DigitalPort #2 is configured to be output.

Similar to the other direction, the device must be set up with a list of outputs. This setup
is active until:

• A call to ResetDevice()

• The device is closed

• Or a new list is set up

An array that contains the outputs to set is required. In the upper part of the example,
you can see the creation of this array, adding outputs DigitalPort #2
and AnalogOutput #1 to it and activate the setup using SetupOutputFrame().

The subsequent call to CreateOutputFrame() creates an instance of type OutputFrame,
which fits to the device metrics. There's no other way to create this type.

UG111 (v1.2) Sep 26, 2017 www.cesys.com 11

.NET

In the loop below, every cycle modifies the values of the outputs specified during setup.
This does not do anything other than storing the values inside the frame. The active
modification of the outputs is done using WriteFrame(), which transfers the values to the
respective peripherals.

Multi Frame Input
This section describes how to read many frames at once, a very useful feature when
you want sample inputs at a constant frequency or using an external trigger. The API
offers very handy methods. The most problematic thing is to choose the right start
method including its parameters.
The example below samples five different inputs at a constant rate of 300 Hz, 20 x 25
frames, completely cached inside the device buffer.

// Construct selection that contains inputs to read from.
IInput[] inputs = new IInput[] {
 device.SingleEndedInputs[0],
 device.SingleEndedInputs[1],
 device.DifferentialInputs[1],
 device.DigitalPorts[0],
 device.DigitalPorts[1]
};

// Prepare device with this collection ...
device.SetupInputFrame(inputs);

// Start sampling ...
device.StartBufferedDataAcquisition(300, 20 * 25, false);

// Read 20 x 25 frames using blocked read,
// this function returns after *all* (25) requested frames are collected.
for (int i = 0; i < 20; ++i)
{
 // Read 25 frames ...
 IList<InputFrame> frames = device.ReadBlocking(25);

 // Write out the 1st one.
 InputFrame inFrame = frames[0];
 Console.WriteLine(
 "DigitalPort #0: " + inFrame.GetDigitalPort(0) + ", " +
 "DigitalPort #1: " + inFrame.GetDigitalPort(1) + ", " +
 "SingleEnded #0: " + inFrame.GetSingleEnded(0) + " V, " +
 "SingleEnded #1: " + inFrame.GetSingleEnded(1) + " V, " +
 "Differential #1: " + inFrame.GetDifferential(1) + " V");
}

UG111 (v1.2) Sep 26, 2017 www.cesys.com 12

.NET

// Stop the DAQ.
device.StopDataAcquisition();

Description

The first lines in this example are similar to single frame example. The device is set up
to sample the specified inputs into a single call. Single ended input #0 and #1,
differential input #1 and digital ports #0 and #1 are used here.

The real data acquisition is than started calling StartBufferedDataAcquition(). Choosing
this method to start up, combined with the used parameters means the following:

• Data has to be completely stored in the device memory (buffered).

• Sampling is done using hardware timed capture at 300 Hz.

• The number of frames to capture is 20 x 25 = 500.

• No external trigger is necessary to initiate the process.

This method does not only configure the DAQ process, but start it as well. In the case of
buffered mode, this is really uncritical. If you require continuous mode, a buffer overrun
may occur shortly after starting the DAQ, so it is very important to either:

• Start to read the sampled frames immediately, as shown in the example.

• Use a second thread to read the frames, start this thread before the DAQ is started.

The example continues with a for loop where every cycle reads 25 frames and outputs
the sampled values of the first frame in this block. The used method ReadBlocking()
returns after the given amount of frames has been read and stalls the thread up to this
point. Use ReadBlocking() with care, because it has two downsides:

• It blocks the access to the whole API due to internal thread locking mechanisms.

• If the specified amount of frames is too small, especially at higher frame rates,
buffer overruns on the device side will occur, as the call and transfer overhead is
too high.

It is a very convenient way to read a defined number of frames. The alternative is the
use ReadNonBlocking(), which returns immediately with all captured frames at the
moment of calling.

UG111 (v1.2) Sep 26, 2017 www.cesys.com 13

.NET

Both read methods return the list of captured frames. The example uses the first frame
of this block (which is guaranteed to contain 25 frames in the example), and output the
sampled values of all specified inputs to the console.

At the end of the example, DAQ is stopped using StopDataAcquisition().

Counter
The example below shows how to use a counter. To allow this using software, a wired
connection between IO-0 and CNT is necessary. IO-0 is used to generate the events
that the counter should count.

// Create local copies, this shortens the source.
DigitalPort dp0 = device.DigitalPorts[0];
Counter cnt = device.Counters[0];

// Set IO-0 as output.
dp0.OutputEnableMask = 0x01;

// Enable the counter.
cnt.Enabled = true;

// Check the counters current value.
Console.WriteLine("Counter before starting: " + cnt.Value);

// Pulse IO-0 3 times.
for (int i = 0; i < 3; ++i)
{
 dp0.Value = 0x01;
 dp0.Value = 0x00;
}

// Check the counters current value.
Console.WriteLine("Counter should be 3: " + cnt.Value);

// Reset and ...
cnt.Reset();

// ... disable the counter.
cnt.Enabled = false;

// Check the counters current value.
Console.WriteLine("Counter should be 0: " + cnt.Value);

// Pulse IO-0 3 times, the counter should ignore these pulses.
for (int i = 0; i < 3; ++i)
{

UG111 (v1.2) Sep 26, 2017 www.cesys.com 14

.NET

 dp0.Value = 0x01;
 dp0.Value = 0x00;
}

// Check the counters current value.
Console.WriteLine("Counter should still be 0: " + cnt.Value);

Description

Like most of the previous examples, an instance of class Device is required. This can
be retrieved using the procedure described here. To demonstrate the counter without
external peripherals, the software controls the events for the counter as well. This
extends the example to around twice its size, but its still easy to understand.

To reduce the amount of code, dp0 and cnt are constructed as local copies of both the
first DigitalPort and the Counter.

The LSB of digital port #0 represents IO-0. To modify IO-0 via software, the example
continues to set this I/O as output using property OutputEnableMask.

Counters are disabled by default, so the next required task is to enable it, otherwise no
event will be detected. The example does this by setting property Enabled of the
Counter instance to true.

The first counter value that is printed out will be zero, which is the default value after
startup or reset.

The counter reacts on every rising edge. The example shows this by pulsing IO-0 three
times, setting its level high and than low in every loop cycle. The result is than printed to
the console. It is expected to be three, based on the pulses in the previous loop (If not,
verify the wired connection between IO-0 and CNT).

The value of the counter is than set to zero calling its Reset() method. In addition,
setting Enabled to false deactivates the counter to any event.

The remaining example code outlines this, by pulsing IO-0 three times again, but the
console output shows that now flanks have been counted in this state.

UG111 (v1.2) Sep 26, 2017 www.cesys.com 15

.NET

Trigger
The following example is much longer than the previous, but outlines various new
things:

• Working with multiple devices.

• Use different multi frame modes.

• Show how to use triggers in input and output mode.

You will need two devices for this example to run, as both devices are chained together
using triggers. The first device acts as master, while the second device is the slave.
Every time, the master samples a frame, an output trigger is generated, while the slave
captures its frame if this trigger has been raised.

Devices must be connected to each other using two wires. Ground (GND) to ground
and trigger (TRG) to trigger.

TIP #1: This example can easily be extended to support more than one slave, you only
have to set up each slave the same way as the slave in the example.

TIP #2: At high bandwidth, it may be necessary to put the individual readNonBlocking()
calls to separate threads. Otherwise reading the data from one device may last as long
as the device side buffer on the second device will need to overflow.

The description is located below the example.

class TriggerExample
{
 /// <summary>
 /// Write frames to console.
 /// </summary>
 /// <param name="device">Device string.</param>
 /// <param name="frames">Frame to dump.</param>
 private void DumpFrames(string device, IList<InputFrame> frames)
 {
 foreach (InputFrame f in frames)
 {
 Console.WriteLine(device + ": " +
 "se#0: " + f.GetSingleEnded(0) + " V, " +
 "dp#0: " + f.GetDigitalPort(0));
 }

UG111 (v1.2) Sep 26, 2017 www.cesys.com 16

.NET

 }

 /// <summary>
 /// Start DAQ, read frames and output the results.
 /// </summary>
 /// <param name="master">Master device.</param>
 /// <param name="slave">Slave device.</param>
 private void RunDataAcquisition(Device master, Device slave)
 {
 // The slave must be started first, as it reacts on the master's
 // trigger. Continuous DAQ is used. Timed using an external trigger.
 slave.StartContinuousExternalTimedDataAcquisition();

 // The master uses hardware timed DAQ, continuous at 50 Hz.
 // The 'false' here signals that the process should start immediately.
 master.StartContinuousDataAcquisition(50, false);

 // The example reads at least 10 frames from
 // both devices and subsequently output the samples.
 int masterFrames = 0, slaveFrames = 0;
 while (masterFrames < 10 || slaveFrames < 10)
 {
 // Start by reading frames from master,
 // output it and increment counter.
 IList<InputFrame> frames = master.ReadNonBlocking();
 DumpFrames("master", frames);
 masterFrames += frames.Count;

 // Do the same with the slave.
 frames = slave.ReadNonBlocking();
 DumpFrames("slave", frames);
 slaveFrames += frames.Count;

 // Don't poll to frequent, this would fully utilize one core.
 Thread.Sleep(1);
 }

 // Finished, gracefully stop DAQ.
 slave.StopDataAcquisition();
 master.StopDataAcquisition();
 }

 /// <summary>
 /// Both devices are fully configured here.
 /// </summary>
 /// <param name="master">Master device.</param>
 /// <param name="slave">Slave device.</param>
 private void Configure(Device master, Device slave)
 {
 // The trigger for the master must be set to alternating output.
 master.Triggers[0].Config = Trigger.TriggerConfig.OutputAlternating;

UG111 (v1.2) Sep 26, 2017 www.cesys.com 17

.NET

 // The slave's trigger must be set to alternating as well.
 slave.Triggers[0].Config = Trigger.TriggerConfig.InputAlternating;

 // Both devices now gets configured to the same input frame layout.
 master.SetupInputFrame(new IInput[] {
 master.SingleEndedInputs[0],
 master.DigitalPorts[0]
 });

 // ... slave
 slave.SetupInputFrame(new IInput[] {
 slave.SingleEndedInputs[0],
 slave.DigitalPorts[0]
 });
 }

 /// <summary>
 /// The examples main method.
 /// </summary>
 private void RunExample()
 {
 try
 {
 // Search for the devices, exactly two are required.
 IList<Device> devices = LibraryInterface.Enumerate(DeviceType.All);
 if (2 != devices.Count)
 {
 Console.WriteLine("Exactly two devices are required.");
 return;
 }

 // As both devices can act as master,
 // we simply use the first one for this role.
 Device master = devices[0];
 master.Open();
 Console.WriteLine("Master: " + master.SerialNumber +
 "@" + master.Identifier);

 // ... and the second as slave.
 Device slave = devices[1];
 slave.Open();
 Console.WriteLine("Slave: " + slave.SerialNumber +
 "@" + slave.Identifier);

 // Configure both master and slave ...
 Configure(master, slave);

 // ... and do the DAQ.
 RunDataAcquisition(master, slave);

 // Close both.
 master.Close();

UG111 (v1.2) Sep 26, 2017 www.cesys.com 18

.NET

 slave.Close();
 }
 catch (IOException ex)
 {
 Console.WriteLine(ex.ToString());
 }
 }

 static void Main(string[] args)
 {
 new TriggerExample().RunExample();
 }
}

Description

Read the example bottom up, starting in the RunExample() method. Nothing really new
in comparison to the previous examples, except that two devices are used concurrently.
Both devices gets opened and a short information about master and slave is printed to
the console.

What follows is the configuration, which is shown in method Configure(). Trigger #0 of
the master device is set to output, alternating. This means, every time, the master
captures a frame, its first trigger toggles the level.

Trigger #0 of the slave is configured to work as input, alternating as well. So the slave
captures a frame if its first trigger detects that the level has been toggled.

That's all for the trigger configuration. Method Configure() completes the process by
setting up a frame using single ended input #0 and digital port #0 as described in
detail here.

Returned to RunExample(), method RunDataAcquisition() is invoked, which shows
how data from both master and slave is read. The most important part here is, how both
DAQ processes are started. The slave is started first, otherwise he may miss one or
more events. The slave is set to sample frames every time a trigger has been detected,
without any count limits. This is done calling
StartContinuousExternalTimedDataAcquisition().

The master's DAQ is than started calling StartContinuousDataAcquisition(), which

UG111 (v1.2) Sep 26, 2017 www.cesys.com 19

.NET

means, no frame count limitation at a specific frequency. The example uses a very low
frequency, 50 Hz, and starts immediately (By using false for parameter
externalStarted).

At runtime, the master will than start to sample frames at the given 50 Hz, toggle its
Trigger every time, while the slave captures a frame every time this event is received at
his input trigger pin. Both capture frames synchronously.

The example continues by reading frames from both devices one after another until
both have returned at least 10 frames. Captured values are written to the console using
method DumpFrames(). The loop contains a 1 ms sleep, otherwise the usage of one
CPU core would go to 100%, which is never a good idea.

After the frames have been read, DAQ is stopped on both devices, calling
StopDataAcquisition(). The program returns to RunExample() and Close() both
devices.

Info
This section simply outlines what information you can get from the API about the API
itself, the device and its peripherals.

// Put out some device specific information.
Console.WriteLine("Device type: " + device.DeviceType.Name);
Console.WriteLine("USB base ver: " + LibraryInterface.UsbBaseVersion);
Console.WriteLine("API vers: " + LibraryInterface.ApiVersion);
Console.WriteLine("Firmware ver: " + device.FirmwareVersion);
Console.WriteLine("Identifier: " + device.Identifier);
Console.WriteLine("Serial number: " + device.SerialNumber);
Console.WriteLine("Temperature: " + device.Temperature);

// Get the real current of the reference current sources.
foreach (CurrentSource source in device.CurrentSources)
{
 Console.WriteLine("Reference current of "
 + source.Name + ": "
 + source.ReferenceCurrent + " uA");
}

// Retrieve information about single ended input #0.
// This works on all analog inputs and outputs.
AnalogInput se0 = device.SingleEndedInputs[0];

UG111 (v1.2) Sep 26, 2017 www.cesys.com 20

.NET

Console.WriteLine("Info for single ended input " + se0.Name + ":");
Console.WriteLine("Min. ICD: " + se0.MinInterChannelDelay + " us");
Console.WriteLine(" Current range: "
 + se0.Range.MinValue + " V to "
 + se0.Range.MaxValue + " V");
Console.WriteLine("Supported ranges:");
for (int i = 0; i < se0.SupportedRanges.Count; ++i)
{
 Range range = se0.SupportedRanges[i];
 Console.WriteLine(" Range #" + i + " range: "
 + range.MinValue + " V to "
 + range.MaxValue + " V, "
 + "Def. ICD: "
 + se0.GetDefaultInterChannelDelay(range) + " us");
}

// Get info for digital port #1.
DigitalPort dp1 = device.DigitalPorts[1];
Console.WriteLine("Info for digital port " + dp1.Name + ":");
Console.WriteLine(" Count of I/O's: " + dp1.IoCount);
for (int i = 0; i < dp1.IoCount; ++i)
{
 Console.WriteLine(" I/O #" + i + ":" + dp1.GetIoName(i));
}

Description

As most of the previous examples, this assumes an opened device as well. How to do
this is described here.

The block in the upper part of the example writes any API or device specific information
to the console. The printed information is self-explanatory.

The first loop iterates over all CurrentSources of the connected device. For every
source, its real current value is printed out. These values were determined during
device calibration.

In the following block, information about single ended input #0 is printed out, which is
the active range setting, as well as all ranges that are valid for this port. All ranges
report their lower and upper bound using properties MinValue and MaxValue. This can
be done for every AnalogInput and AnalogOutput.

UG111 (v1.2) Sep 26, 2017 www.cesys.com 21

.NET

The last part of the example prints information about digital port #1. The value retrieved
from IoCount is the number of I/O's that can be accessed by this DigitalPort. This may
vary between the individual ports a device has. The names of all its single I/O's are
printed as well.

Class Reference
The class reference is a complete but short overview of all classes and their methods
used in the .NET API. It does not outline how the components have to be used.
The sections parallel to this topic show many practical examples and should be the first
you have to read to understand and use the API. A good starting point is this topic.

Interfaces

Both interfaces below are used to group input- and output peripherals.

interface IInput
Used to group peripherals which can act as input.

interface IOutput
Used to group peripherals which can act as output.

DeviceType

This class is an enumeration of device types and device classes. Its static instances can
be used to control the enumeration process. Besides that, each device reports its class
using this type by property DeviceType.

static readonly DeviceType All
Includes all known devices, independent which bus type is used. In the current stage,
this equals the following instance, Usb.

static readonly DeviceType Usb
By using this instance in the enumeration process, all known devices connected via
USB are reported.

UG111 (v1.2) Sep 26, 2017 www.cesys.com 22

.NET

static readonly DeviceType CeboLC
This instance must be specified if CEBO LC devices should be searched. In addition,
property DeviceType of Device returns this if the device is of this type.

static readonly DeviceType CeboStick
This instance must be specified if CEBO STICK devices should be searched. In
addition, getDeviceType() of Device returns this if the device is of this type.

string Name { get; }
This property is the name, e.g. "CeboLC" for a CeboLC instance.

AnalogInput

This class is the host side interface to any analog input, so you have to use its methods
to request or modify the peripheral that this instance is assigned to. Get an instance of
this class from properties SingleEndedInputs or DifferentialInputs of the corresponding
Device instance.

IList<Range> SupportedRanges { get; }
This property lists the supported Ranges this input supports. You can use each of these
calling SetParameters().

int GetDefaultInterChannelDelay(Range range)
Return the default interchannel delay (ug105-cebo-lc.pdf) at the specified Range in
microseconds.

int MinInterChannelDelay { get; }
The minimal interchannel delay (ug105-cebo-lc.pdf) for this input in microseconds.

void SetParameters(Range range)
Sets the Range level on the analog input. Overwrites any previously adjusted
interchannel delay (ug105-cebo-lc.pdf) with the default value.

int SetParameters(Range range, int interChannelDelay)
Set Range for this input. In addition, the interchannel delay (ug105-cebo-lc.pdf) in

UG111 (v1.2) Sep 26, 2017 www.cesys.com 23

.NET

microseconds is adjusted manually. The returned value is the interchannel delay that is
really used (as not all specified values can be handled by the hardware).

Range Range { get; set; }
This property can be used to define or read the active Range setting. Setting it will be
similar calling SetParameters(Range).

int InterChannelDelay { get; }
This property can be used to read the active interchannel delay(ug105-cebo-lc.pdf) .

float Value { get; }
The voltage value read from input directly (ug105-cebo-lc.pdf) .

string Name { get; }
Name of the input.

AnalogOutput

This class represents an analog output. You can get an instance of this class from
property AnalogOutputs from the corresponding Device.

IList<Range> SupportedRanges { get; }
Returns the list of Ranges this input supports. You can use each of these calling
SetParameters().

void SetParameters(Range range)
Sets the Range on the analog output.

Range Range { get; set; }
This property can be used to define or read the active Range setting. Setting it will be
similar calling SetParameters(Range).

float Value { set; }
Assigning a value to this property sets the voltage on the output directly
(ug105-cebo-lc.pdf) .

UG111 (v1.2) Sep 26, 2017 www.cesys.com 24

.NET

string Name { get; }
Name of the output.

DigitalPort

This class is the interface to work with digital ports. Retrieve instances from DigitalPorts
of the respective Device.

int OutputEnableMask { set; }
Set bitwise mask that defines which of the I/O's on the specified port are input and
output. A bit of value 1 defines the specific I/O as output, e.g. mask = 0x03 means that
I/O 0 and 1 are set to output, while I/O 2 to n are inputs.

int IoCount { get; }
The count of I/O's of the specific port.

int Value { get; set; }
Set output I/O's or read them. Only the bits that have been defined as output
using OutputEnableMask are modified during write.

string Name { get; }
Name of the port.

string GetIoName(int io)
Returns the name of the I/O as specified by parameter io. The range of io is 0 <= io <
IoCount.

Counter

Interface class to counters inside the device. Class instances can be retrieved from
property Counters of the specific Device.

void Reset()
Reset the counter to value 0.

bool Enabled { get; set; }

UG111 (v1.2) Sep 26, 2017 www.cesys.com 25

.NET

Define or request the counters enabled state.

CounterConfig Config { get; set; }
Define or retrieve the current counter configuration.

enum CounterConfig

• RisingEdge: Counter event is rising edge.

• FallingEdge: Counter event is falling edge.

• Alternating: Counter event are both rising and falling edges.

long Value { get; }
Get the current value of the counter.

string Name { get; }
Name of the counter.

Trigger

Class that represents a trigger inside the device. Instances can be retrieved by
from Triggers of the respective Device.

bool Enabled { get; set; }
Define or request the triggers enabled state.

TriggerConfig Config { get; set; }
Define or retrieve the current trigger configuration.

enum TriggerConfig

• OutputPulse:Trigger is output. Every trigger-event generates a positive pulse

• OutputAlternating: Trigger is output. Every trigger-event toggles the level

• InputRisingEdge: Trigger is input, reacts on a rising edge

• InputFallingEdge: Trigger is input, reacts on falling edge

• InputAlternating: Trigger is input, reacts on rising and falling edge.

string Name { get; }

UG111 (v1.2) Sep 26, 2017 www.cesys.com 26

.NET

Name of the trigger.

Range

Use when handling range settings. Valid setting for an AnalogInput or AnalogOutput can
be retrieved from their SupportedRanges properties.

float MinValue { get; }
The lower voltage of the specific range.

float MaxValue { get; }
The upper voltage of the specific range.

Led

Interface to the LED's on the board. Instances are accessed from Leds of the
corresponding Device.

bool Enabled { set; }
Enable or disable the LED by setting this property.

string Name { get; }
Name of the LED.

CurrentSource

Class that represents the interface to the Fixed Current Outputs. Instances can be
retrieved from CurrentSources of the respective Device.

float ReferenceCurrent { get; }
Returns the actual value of the Fixed Current Output, which is determined during
manufacturing process and stored in onboard flash. The returned value is given in micro
ampere.

string Name { get; }
Name of the current source.

UG111 (v1.2) Sep 26, 2017 www.cesys.com 27

.NET

InputFrame

The input frame is a data class which stores measured samples from all inputs a device
has (and which meet the frame concept (ug105-cebo-lc.pdf). All samples inside a single
frame are captured in a very short time span (which depends on the underlying device).
Only values that have been selected using SetupInputFrame() before sampling the
frame are valid, the other are set to 0 by default.

float GetSingleEnded(int index)
Return the voltage value of single ended analog input using the specified index at the
moment the frame was sampled. This value is calibrated.

float GetDifferential(int index)
Return the voltage value of differential analog input using the specified index at the
moment the frame was sampled. This value is calibrated.

int GetDigitalPort(int index)
Return the I/O state of the digital port indicated by the given index at the moment the
frame has been sampled.

bool GetTrigger(int index)
Return the state of the Trigger as specified by the given index in the moment the frame
has been sampled.

long GetCounter(int index)
Return the value of the Counter as specified by the given index.

OutputFrame

This class stores all values the should be set to the outputs as specified using
SetupOutputFrame(). Calling one of its methods does not affect the hardware. This is
done when calling WriteFrame(). An OutputFrame instance can't be created directly, as
its metrics depends on the underlying device. The instance can retrieved calling
CreateOutputFrame() of the device instance that should be used.

UG111 (v1.2) Sep 26, 2017 www.cesys.com 28

.NET

void SetDigitalPort(int index, int value)
Set the bit mask for the DigitalPort as specified using index. Only bits set to output
using OutputEnableMask are affected.

void SetAnalogOutput(int index, float value)
Define the voltage value that should be set to the AnalogOutput as specified by the
given index. The value will be calibrated before it is active.

Device

This is the primary class of the framework. Each instance corresponds to one physical
device. The class is not intended to be instanced directly. Use the method Enumerate()
of the class LibraryInterface to access instances. Many of the methods are related to
the device itself. Besides that, instances to all device peripherals can be accessed.

void Open()
This method must be called before doing anything with the device. Internally a
communication to the device is constructed and several initialization is done. Various
device and firmware specific constants are read and method ResetDevice() is called. To
guarantee compatibility between API and device, if the major number of the device
firmware is higher than the major number of the API, open() will fail, a newer version of
the API must be used with this device.

void Close()
This closes the connection to the device, frees all internal resources and allows the
device to be used by others (in the application instance and in different applications).
Calling close will never throw an exception, it will always fail silently.

void ResetDevice()
Calling this will stop any hardware controlled processing and reset the device to its
power up settings. This is usually necessary if errors occur (Except logic or
communication errors). Invoking this method in a multithreaded context should be done
with extra care.

void ResetPeripherals(int mask)

UG111 (v1.2) Sep 26, 2017 www.cesys.com 29

.NET

Resets specific peripherals on the device side. Parameter mask specifies which
elements using a bit mask. The bit mask must be constructed using the following flags,
which will be enhanced in future versions:

int&nsbp;Device.FlagResetInputFifo Clears the FIFO used during data acquisition
and is error flagged

string Identifier { get; }
This returns a unique identifier to the device which is constructed using the physical
connection properties. It is guaranteed to be unique at runtime, as well as constant
between reboots of the operating system (except updates to the operating system
change the behavior how physical properties are enumerated).

Be aware: Plugging a device to a different location (e.g. different USB port) will change
this specifier, it is not device dependent. Use SerialNumber in this case.
This can be requested in front of invoking Open().

DeviceType DeviceType { get; }
The specific type of the device that is bound to the instance. This is one of class
DeviceType static members.
This can be requested before invoking Open().

string FirmwareVersion { get; }
The firmware version encoded as string, e.g. "1.0".

string SerialNumber { get; }
The device serial number as string. This string is unique for each device.

float Temperature { get; }
Current temperature in °C of the device.

uint WatchdogTimeout
Sets or reads the watchdog timeout in 250ms steps. If enabled, the device reboots if no
data transfer has been done in the given time frame. Default value is 0xffffffff, which
disables this feature.

UG111 (v1.2) Sep 26, 2017 www.cesys.com 30

.NET

int CalculateMaxBufferedInputFrames()
Depending on the specified inputs the device site buffer can store a limited amount of
frames. This method calculates the count of frames that will fit into this buffer using the
current frame setup, which is last set using setupInputFrame(). Modifying the frame
setup invalidates this value and must be updated invoking this method again. This value
is primary intended to be used in context with startBufferedDataAcquisition().

void SetupInputFrame(IEnumerable<IInput> inputs)
When doing any form of frame based data acquisition, which is described in the user
guide CBO-LC, this method must be used to select the inputs to be read. There's no
limit which inputs can be selected, but every input can only be specified once. This
method can only be called if no multi frame based data acquisition (ug105-cebo-lc.pdf)
is active.
Any subsequent frame based call is affected by this setup.
The input array can contain any instance that implements IInput, AnalogInput,
DigitalPort, Counter or Trigger.

float StartBufferedDataAcquisition(float frameRate, int frameCount, bool
externalStarted)
Starts a buffered data acquisition at the specified frameRate for exactly frameCount
frames. If externalStarted is true, the acquisition is started at the moment an external
trigger event has been detected, immediately otherwise. Parameter frameRate must be
equal or smaller than the value reported by CalculateMaxBufferedInputFrames(). The
returned value is the frame rate that is really used, as not every possible frame rate can
be handled by the device. This value is as near as possible to the specified frame rate.
Detailed description for this can be found in the user guide CEBO-LC (ug105-cebo-
lc.pdf).

void StartBufferedExternalTimedDataAcquisition(int frameCount)
Very similar to the method above, except that no frame rate is used the sample frame,
but every time an external trigger has been detected one single frame is sampled.
Acquisition is automatically stopped after the specified amount of frames has been
sampled. Detailed description for this can be found in the user guide CEBO-LC (ug105-
cebo-lc.pdf).

float StartContinuousDataAcquisition(float frameRate, bool externalStarted)

UG111 (v1.2) Sep 26, 2017 www.cesys.com 31

.NET

Starts a data acquisition without frame limit. The host must read the sampled data as
fast as possible, otherwise buffer overflow is signaled and the process has been failed.
Frames are sampled at the specified frameRate. If externalStarted is true, sampling
starts at the first detected trigger event, immediately otherwise. The return value is the
frame rate that is really used, as not every possible rates are possible.
In a multithreaded context, it is advised to start reading frames before calling this
method.
More details about data acquisition can be found in in the user guide CEBO-LC (ug105-
cebo-lc.pdf).

void StartContinuousExternalTimedDataAcquisition()
Similar to the method above, but instead of a fixed frame rate, frames are sampled for
every detected trigger. Detailed information about this can be found in the user guide
CEBO-LC (ug105-cebo-lc.pdf).

void StopDataAcquisition()
Stops a currently active data acquisition. The device buffer is not modified calling this,
so unread data can be fetched subsequently.

IList<InputFrame> ReadBlocking(int frameCount)
When doing multi frame data acquisition (more: ug105-cebo-lc.pdf), this is one method
to read the sampled frames from device to host. This version will block the current
thread until the specified amount of frames has been read, there's no timeout. After the
call returns without an exception, the returned list contains exactly the specified amount
of InputFrames. The alternative to this call is described below.

IList<InputFrame> ReadNonBlocking()
This method is similar to the one above, except that it always returns immediately, while
trying to read as much frames as possible. The returned list contains all sampled
InputFrames since the start of the data acquisition or the last frame read. Especially for
high data amounts, this method should be called cyclically without to high delays.

InputFrame ReadFrame()
Read single frame as set up calling SetupInputFrame() and return immediately. This
cannot be called if multi frame data acquisition (ug105-cebo-lc.pdf) is active.

UG111 (v1.2) Sep 26, 2017 www.cesys.com 32

.NET

void SetupOutputFrame(IEnumerable<IOutput> outputs)
Specifies which Outputs are involved in the next frame output process. There's no limit
of the specified outputs, but no single instance can be used more than once. Valid
outputs that can be added to the list are AnalogOutput and DigitalPort.

void WriteFrame(OutputFrame frame)
Set all outputs that have been selected using SetupOutputFrame() in a single call. Data
to set on the respective outputs must be set in the given OutputFrame. The frame must
be constructed using method CreateOutputFrame() of the same device instance were it
is used.

OutputFrame CreateOutputFrame()
Create an OutputFrame instance that fits to the device metrics from which instance the
method is called. The frame can than be filled with data and used calling WriteFrame()
of the same device instance.

IList<AnalogInput> SingleEndedInputs { get; }
List of all single ended inputs.

IList<AnalogInput> DifferentialInputs { get; }
List of differential analog inputs.

IList<AnalogOutput> AnalogOutputs { get; }
List of the analog outputs.

IList<DigitalPort> DigitalPorts { get; }
List of digital ports.

IList<Counter> Counters { get; }
List of counters.

IList<Trigger> Triggers { get; }
List of triggers.

IList<CurrentSource> CurrentSources { get; }
List of current sources.

UG111 (v1.2) Sep 26, 2017 www.cesys.com 33

.NET

IList<Led> Leds { get; }
List of LED's.

LibraryInterface

This class contains static functionality only. Its responsibility is to serve as interface to
methods that are not bound to any device.

string ApiVersion { get; }
Report the version number of the underlying CeboMsr API string, i.e. "1.0".

string UsbBaseVersion { get; }
The version number of the system interface USB layer string, i.e. "1.0".

IList<Device> Enumerate(DeviceType type)
The specified type parameter must be one of class DeviceType static members. The
system is than scanned for known devices and subsequently filtered to meet the
specified type. Devices that are already opened were skipped too. The returned list
contains all candidates that are ready for use.
 For each instance that should be used, Open() must be called.
 Starting a new enumeration invalidates the list from the previous invocation.

UG111 (v1.2) Sep 26, 2017 www.cesys.com 34

C++

C++
The C++ API is an ultra-thin layer on top of the CeboMsr API. It is distributed as a pair of
files (cebomsrpp.cpp, cebomsrpp.h), which contain all functionality of the API mapped
to the C++ language.

To use the API in a project, add both files as well as the C library header file
(cebomsr.h) to it. Depending on the used compiler, library files may be necessary as
well (check the compatibility topic below).

How the API itself is used is described chapter “basics”.

Compatibility
The API has been tested on the compilers in the table below. It is expected that newer
versions of these compilers are compatible as well.
As the API is designed to only use standard language elements as well as only uses the
standard library, there is a good chance that older compilers can be used too, but they
are not officially supported.

OS Compiler Library files Version/ Exp. Release

Windows*1 MS VC ++ 2005
MS VC ++ 2008
MS VC ++ 2010

cebomsr-{V}-{A}.lib 1.0

Windows*1 MinGW G ++ 4.4 cebomsr-{V}-x86.dll 1.0

Linux G ++ 4.4 - Oct 2012

Mac OS X Lion*2 G ++ 4.4 - Oct/ Nov 2012

{V} - Version number of the API, e.g. 1.0.
{A} - Architecture, depends on the target executable, -x86 for 32 bit, -x64 for 64 bit.
*1 - Windows® is a trademark of Microsoft Corporation.
*2 - Mac OS X Lion is a trademark of Apple Inc.

Namespace
All components are located in namespace CeboMsr.

UG111 (v1.2) Sep 26, 2017 www.cesys.com 35

C++

Error handling
Any logical or runtime error that is reported by the CeboMsr API is transformed to an
exception. Only exceptions defined by the C++ standard library are used. The following
table lists all possible exceptions thrown by the C++ implementation of the CeboMsr
API:

Exception Circumstances

std::invalid_argument If any of the used parameters has an invalid value in the current context.

std::out_of_range When using an invalid index. (Most of these are prevented due to the API
design).

std::logic_error Thrown if something is called which is not allowed in this stage.

std::runtime_error Indicates an unexpected behavior like communication problems with the
device.

As seen in the table above, all exceptions but std::runtime_error are predictable during
development. In the case of std::runtime_error, human investigation may be required to
clarify the reason of the problem.
All exception objects contain a textual description of the problem, which can be
retrieved by calling the what() method.

Basics
This section describes the first steps that are necessary to use the API. We start by
showing a basic example that:

• includes the required header file

• searches for all known devices

• grabs the first available device

• opens the device

• resets its state

• closes the device

#include <cebomsrpp.h>

...

using namespace CeboMsr;

...

UG111 (v1.2) Sep 26, 2017 www.cesys.com 36

C++

// Search for devices ...
DeviceVector devices = LibraryInterface::enumerate(DeviceType::All);

// If at least one has been found …
if (!devices.empty()) {

 // Use the first one ...
 Device device = devices[0];

 // Open device, nothing can be done without doing this.
 device.open();

 ...

 // After some processing, the device can be resetted to its
 // power up condition.
 device.resetDevice();

 ...

 // Finalize device usage, this free's up the device,
 // so it can be used again, including other applications.
 device.close();
}

Description

The first lines in the example above include the C++ API to the active source document.
The using namespace directive brings the CeboMsr API to global scope, so i.e. class
Device can be referenced as "Device" instead of "CeboMsr::Device".

In the application flow, enumeration must be always the first task when using the API. It
searches the system for known, not yet used devices and offers the caller a list of
device instances. The parameter that is used
calling enumerate() of LibraryInterface specifies which devices should be searched:

• All known devices (DeviceType::All)

• Device classes (e.g. DeviceType::Usb)

• Specific types (e.g. DeviceType::CeboLC)

We search for all devices in the example above. The returned DeviceVector contains
candidates of type Device that can be used subsequently.

As DeviceVector is just an alias to std::vector<Device>, all methods from std::vector<>

UG111 (v1.2) Sep 26, 2017 www.cesys.com 37

http://en.cppreference.com/w/cpp/container/vector
http://en.cppreference.com/w/cpp/container/vector

C++

can be used. For those who are not familiar with the standard library, empty() checks if
the list contains at least one element and return false otherwise. If a device has been
found, the if branch is entered, were we create a local copy of the first device. This
instance must be used subsequently.

The call to open() flags the device for use. Any new enumeration (before
calling close() on the same instance) will filter this instance. This is just a simple
mechanism to prevent double access to the same device.
After the device has been opened, it can be used in any way. Method resetDevice() is
shown here, because it has a superior role. It stops all active processing inside the
device and resets all configuration values to their startup condition. It is not necessary to
call it, but is a good way to reach a defined state i.e. in an error condition. It is implicitly
invoked when calling open().

At the end of the current scope, method close() is called to signal API and system that
the device is not used anymore. This is an important call, because leaving it in opened
state will prevent it from getting enumerated again.

Single Value I/O
This section describes simple single input and output of values. It continues the
example from section Basics, so an opened device instance is available. Single value
I/O is described in the user guide CEBO-LC (ug105-cebo-lc.pdf) in detail.

// Read digital port #0 and write result to digital port #1 (mirror pins).
// At first, we need references to both ports.
// Port #0 will be a copy of the original instance.
DigitalPort dp0 = device.getDigitalPorts().at(0);

// As an alternative, get a reference to Port #1.
const DigitalPort &dp1 = device.getDigitalPorts().at(1);

// Configure port first, all bits of digital port #0 as input (default)
// and all bits of digital port #1 as output.
dp1.setOutputEnableMask(0xff);

// Read from #0 ...
int value = dp0.read();

// Write the value to #1 ...
dp1.write(value);

UG111 (v1.2) Sep 26, 2017 www.cesys.com 38

http://www.cesys.com/fileadmin/user_upload/documents/CEBO/ug105-cebo-lc.pdf

C++

// Now some analog I/O, do it without any additional local references.
// Read single ended #0 input voltage ...
float voltageValue = device.getSingleEndedInputs().at(0).read();

// Write value to analog output #1
device.getAnalogOutputs().at(1).write(voltageValue);

Description

If you want work with device peripherals, get instances using the various component
access methods of class Device. If more then one method must be called, either create
a local copy or assign it to a local reference, this reduces the amount of code to write.
Both is shown in the example above accessing DigitalPort #0 and #1. After you have an
instance, invocations to its methods affects this specific peripheral.

The example outlines how to read all I/O's of digital port #0 and mirror the result on port
#1. The first requirement to accomplish this is to define the direction of the individual
I/O's. By default, all I/O's are configured to be inputs, so the example shows how to set
all I/O's on port #1 as output, calling setOutputEnableMask() on its reference. All bits
that are '1' in the specified mask signal the I/O to be an output. This is all you have to do
for configuration.

The mirroring step is quite easy, read() the value from the instance that represents port
#0 and store it in a local integer. The result is subsequently used calling write() on the
instance the represents port #1.

The second half of the example outlines how to access peripherals without local copies
or references. This requires fewer but longer lines of code but has no behavioral
difference. Choose which style you prefer on your own.

The example continues doing direct single value I/O using analog peripherals. Like the
digital port part, an input is mirrored to an output.

The call to read() returns the calibrated voltage value on this input as float.
Calling write() on the AnalogOutput instance that represents analog output #1 using the
returned voltage value will directly modify the real output on the device.

UG111 (v1.2) Sep 26, 2017 www.cesys.com 39

C++

Single Frame Input
This section presents an example that samples a selection of inputs in a single process.
The difference to single value read is not that much on the coding side, but there's a
large improvement when it comes to performance. Reading more than one input costs
only an insignificant higher amount of time in comparison to single I/O.
Configuration of the individual peripherals is exactly the same, so setting the I/O
direction if digital ports or set the input range on an analog input is almost identical.

// Prepare and fill the list of inputs to read.
InputVector inputs;
inputs
 << device.getSingleEndedInputs().at(0)
 << device.getSingleEndedInputs().at(1)
 << device.getDifferentialInputs().at(1)
 << device.getDigitalPorts().at(0)
 << device.getDigitalPorts().at(1)
 << device.getCounters().at(0);

// Setup device with this selection.
device.setupInputFrame(inputs);

// Read the values multiple times and write them to the console.
for (int i = 0; i < 100; ++i) {
 // Read all inputs into the instance of InputFrame.
 InputFrame inFrame = device.readFrame();

 // Write results to the console.
 cout
 << "DigitalPort #0: " << inFrame.getDigitalPort(0) << ", "
 << "DigitalPort #1: " << inFrame.getDigitalPort(1) << ", "
 << "SingleEnded #0: " << inFrame.getSingleEnded(0) << " V, "
 << "SingleEnded #1: " << inFrame.getSingleEnded(1) << " V, "
 << "Differential #1: " << inFrame.getDifferential(1) << " V, "
 << "Counter #0: " << inFrame.getCounter(0) << endl;
}

Description

The primary work for frame input I/O is to setup the device with the list of inputs that are
involved. The C++ API offers the type InputVector, which is just an alias
to std::vector<Input>. To simplify the list creation, operator<< has been implemented to
present a clean way to add inputs to this vector.

The example does this in the upper part. It creates a local instance of

UG111 (v1.2) Sep 26, 2017 www.cesys.com 40

http://en.cppreference.com/w/cpp/container/vector

C++

type InputVector and add several inputs to it:

• Single ended analog input #0 and #1

• Differential analog input #1

• Digital ports #0 and #1

• Counter #0

This list is than used calling setupInputFrame(), which prepares the device with this
setup. This is active until:

• A call to resetDevice()

• The device is closed

• Or a new list is specified

In the subsequent loop, the specified inputs are sampled in every loop cycle using
method readFrame(). The call lasts until all inputs are sampled and returns the values
immediately in an instance of class InputFrame.
This instance holds all sampled values and offers methods to request them, which is
shown in the lower part of the example.

Single Frame Output
In this section, concurrent modification of outputs will be outlined. In comparison to
single value I/O, this technique is very efficient when working with more than one single
output. As you can see in the following example, using it is quite straightforward.

// Write to analog out #1 and digital out #2 in one call.
// Prepare and set output selection.
OutputVector outputs;
outputs
 << device.getDigitalPorts().at(2)
 << device.getAnalogOutputs().at(1);

// Prepare device ...
device.setupOutputFrame(outputs);

// Create instance of OutputFrame. There's no direct construction, as this
// instance may vary between different device types.
OutputFrame outFrame = device.createOutputFrame();

// Write it to hardware, modify contents in every looping.

UG111 (v1.2) Sep 26, 2017 www.cesys.com 41

C++

for (int i = 0; i < 100; ++i) {
 outFrame.setAnalogOutput(1, (float)(3 * sin((float)i / 100.f)));
 outFrame.setDigitalPort(2, i);

 device.writeFrame(outFrame);
}

Description

First of all, the example assumes that an opened instance of class Device is available,
as well as that DigitalPort #2 is configured to be output.
Similar to the other direction, the device must be set up with a list of outputs. This setup
is active until:

• A call to resetDevice()

• The device is closed

• Or a new list is set up

In the C++ API, OutputVector alias std::vector<Output> is used as list type. The API
implements operator<< for this type, so the list can be filled easily.

In the upper part of the example, you can see the creation of this list, adding
outputs DigitalPort #2 and AnalogOutput #1 to it and activate the setup
using setupOutputFrame().

The subsequent call to createOutputFrame() creates an instance of type OutputFrame,
which fits to the device metrics. There's no other way to create this type.

In the loop below, every cycle modifies the values of the outputs specified during setup.
This does not do anything other than storing the values inside the frame. The active
modification of the outputs is done using writeFrame(), which transfers the values to the
respective peripherals.

Multi Frame Input
This section describes how to read many frames at once, a very useful feature when
you want sample inputs at a constant frequency or using an external trigger. The API
offers very handy methods. The most problematic thing is to choose the right start
method including its parameters.

UG111 (v1.2) Sep 26, 2017 www.cesys.com 42

http://en.cppreference.com/w/cpp/container/

C++

The example below samples five different inputs at a constant rate of 300 Hz, 20 x 25
frames, completely cached inside the device buffer.

// Construct selection that contains inputs to read from.
InputVector inputs;
inputs
 << device.getSingleEndedInputs().at(0)
 << device.getSingleEndedInputs().at(1)
 << device.getDifferentialInputs().at(1)
 << device.getDigitalPorts().at(0)
 << device.getDigitalPorts().at(1);

// Prepare device with this collection ...
device.setupInputFrame(inputs);

// Start sampling ...
device.startBufferedDataAcquisition(300, 20 * 25, false);

// Read 20 x 25 frames using blocked read,
// this function returns after *all* (25) requested frames are collected.
for (int i = 0; i < 20; ++i) {
 // Read 25 frames ...
 InputFrameVector frames = device.readBlocking(25);

 // Write out the 1st one.
 const InputFrame &inFrame = frames[0];
 cout
 << "DigitalPort #0: " << inFrame.getDigitalPort(0) << ", "
 << "DigitalPort #1: " << inFrame.getDigitalPort(1) << ", "
 << "SingleEnded #0: " << inFrame.getSingleEnded(0) << " V, "
 << "SingleEnded #1: " << inFrame.getSingleEnded(1) << " V, "
 << "Differential #1: " << inFrame.getDifferential(1) << " V"
 << endl;
}

// Stop the DAQ.
device.stopDataAcquisition();

Description

The first lines in this example are similar to single frame example. The device is set up
to sample the specified inputs into a single call. Single ended input #0 and #1,
differential input #1 and digital ports #0 and #1 are used here.
The real data acquisition is than started calling startBufferedDataAcquition(). Choosing
this method to start up, combined with the used parameters means the following:
Data has to be completely stored in the device memory (buffered).

UG111 (v1.2) Sep 26, 2017 www.cesys.com 43

C++

Sampling is done using hardware timed capture at 300 Hz.
The number of frames to capture is 20 x 25 = 500.
No external trigger is necessary to initiate the process.
This method does not only configure the DAQ process, but start it as well. In the case of
buffered mode, this is really uncritical. If you require continuous mode, a buffer overrun
may occur shortly after starting the DAQ, so it is very important to either:
Start to read the sampled frames immediately, as shown in the example.
Use a second thread to read the frames, start this thread before the DAQ is started.
The example continues with a for loop where every cycle reads 25 frames and outputs
the sampled values of the first frame in this block. The used
method readBlocking() returns after the given amount of frames has been read and
stalls the thread up to this point. Use readBlocking() with care, because it has two
downsides:
It blocks the access to the whole API due to internal thread locking mechanisms.
If the specified amount of frames is too small, especially at higher frame rates, buffer
overruns on the device side will occur, as the call and transfer overhead is too high.
It is a very convenient way to read a defined number of frames. The alternative is the
use readNonBlocking(), which returns immediately with all captured frames at the
moment of calling.
Both read methods return the list of captured frames as type InputFrameVector, which is
an alias to std::vector<InputFrame>. The example uses the first frame of this block
(which is guaranteed to contain 25 frames in the example), and output the sampled
values of all specified inputs to the console.
At the end of the example, DAQ is stopped using stopDataAcquisition().

Counter
The example below shows how to use a counter. To allow this using software, a
wired connection between IO-0 and CNT is necessary. IO-0 is used to generate the
events that the counter should count.

// Create local copies, this shortens the source.
DigitalPort dp0 = device.getDigitalPorts().at(0);
Counter cnt = device.getCounters().at(0);

// Set IO-0 as output.
dp0.setOutputEnableMask(0x01);

UG111 (v1.2) Sep 26, 2017 www.cesys.com 44

http://en.cppreference.com/w/cpp/container/vector

C++

// Enable the counter.
cnt.setEnabled(true);

// Check the counters current value.
cout << "Counter before starting: " << cnt.read() << endl;

// Pulse IO-0 3 times.
for (int i = 0; i < 3; ++i) {
 dp0.write(0x01);
 dp0.write(0x00);
}

// Check the counters current value.
cout << "Counter should be 3: " << cnt.read() << endl;

// Reset and ...
cnt.reset();

// ... disable the counter.
cnt.setEnabled(false);

// Check the counters current value.
cout << "Counter should be 0: " << cnt.read() << endl;

// Pulse IO-0 3 times, the counter should ignore these pulses.
for (int i = 0; i < 3; ++i) {
 dp0.write(0x01);
 dp0.write(0x00);
}

// Check the counters current value.
cout << "Counter should still be 0: " << cnt.read() << endl;

Description

Like most of the previous examples, an instance of class Device is required. This can
be retrieved using the procedure described in the programming reference C++. To
demonstrate the counter without external peripherals, the software controls the events
for the counter as well. This extends the example to around twice its size, but its still
easy to understand.

To reduce the amount of code, dp0 and cnt are constructed as local copies of both the
first DigitalPort and the Counter.

The LSB of digital port #0 represents IO-0. To modify IO-0 via software, the example

UG111 (v1.2) Sep 26, 2017 www.cesys.com 45

http://dev.cesys.com/en/support/bedienungsanleitungen/cebo/programming_reference/c/basics.html

C++

continues to set this I/O as output using method setOutputEnableMask().

Counters are disabled by default, so the next required task is to enable it, otherwise no
event will be detected. The example does this by calling setEnabled() of
the Counter instance.

The first counter value that is printed out will be zero, which is the default value after
startup or reset.

The counter reacts on every rising edge. The example shows this by pulsing IO-0 three
times, setting its level high and than low in every loop cycle. The result is than printed to
the console. It is expected to be three, based on the pulses in the previous loop (If not,
verify the wired connection between IO-0 and CNT).

The value of the counter is than set to zero calling its reset() method. In
addition, setEnabled() deactivates the counter to any event.
The remaining example code outlines this, by pulsing IO-0 three times again, but the
console output shows that now flanks have been counted in this state.

Trigger
The following example is much longer than the previous, but outlines various new
things:

• Working with multiple devices.

• Use different multi frame modes.

• Show how to use triggers in input and output mode.
You will need two devices for this example to run, as both devices are chained together
using triggers. The first device acts as master, while the second device is the slave.
Every time, the master samples a frame, an output trigger is generated, while the slave
captures its frame if this trigger has been raised.

Devices must be connected to each other using two wires. Ground (GND) to ground
and trigger (TRG) to trigger.

TIP #1: This example can easily be extended to support more than one slave, you only
have to set up each slave the same way as the slave in the example.

UG111 (v1.2) Sep 26, 2017 www.cesys.com 46

C++

TIP #2: At high bandwidth, it may be necessary to put the individual readNonBlocking()
calls to separate threads. Otherwise reading the data from one device may last as long
as the device side buffer on the second device will need to overflow.

The description is located below the example.

// Write frames to console.
void dumpFrames(const string &device, const InputFrameVector &frames) {
 for (size_t i = 0; i < frames.size(); ++i) {
 cout << device << ": "
 << "se#0: " << frames.at(i).getSingleEnded(0) << " V, "
 << "dp#0: " << frames.at(i).getDigitalPort(0) << endl;
 }
}

// Start DAQ, read frames and output the results.
void runDataAcquisition(Device &master, Device &slave) {
 // The slave must be started first, as it reacts on the master's trigger.
 // Continuous DAQ is used. Timed using an external trigger.
 slave.startContinuousExternalTimedDataAcquisition();

 // The master uses hardware timed DAQ, continuous at 50 Hz.
 // The 'false' here signals that the process should start immediately.
 master.startContinuousDataAcquisition(50, false);

 // The example reads at least 10 frames from
 // both devices and subsequently output the samples.
 int masterFrames = 0, slaveFrames = 0;
 while (masterFrames < 10 || slaveFrames < 10) {
 // Start by reading frames from master,
 // output it and increment counter.
 InputFrameVector frames = master.readNonBlocking();
 dumpFrames("master", frames);
 masterFrames += (int)frames.size();

 // Do the same with the slave.
 frames = slave.readNonBlocking();
 dumpFrames("slave", frames);
 slaveFrames += (int)frames.size();

 // Don't poll to frequent, this would fully utilize one core.
 cesleep(1);
 }

 // Finished, gracefully stop DAQ.
 slave.stopDataAcquisition();
 master.stopDataAcquisition();

UG111 (v1.2) Sep 26, 2017 www.cesys.com 47

C++

}

// Both devices are fully configured here.
void configure(Device &master, Device &slave) {
 // The trigger for the master must be set to alternating output.
 master.getTriggers().at(0).setConfig(Trigger::OutputAlternating);

 // The slave's trigger must be set to alternating as well.
 slave.getTriggers().at(0).setConfig(Trigger::InputAlternating);

 // Both devices now gets configured to the same input frame layout.
 InputVector inputs;
 inputs
 << master.getSingleEndedInputs().at(0)
 << master.getDigitalPorts().at(0);
 master.setupInputFrame(inputs);

 // Use the same list, clear it before use.
 inputs.clear();
 inputs
 << slave.getSingleEndedInputs().at(0)
 << slave.getDigitalPorts().at(0);
 slave.setupInputFrame(inputs);
}

// Application entry point.
int main() {
 try {
 // Search for the devices, exactly two are required.
 DeviceVector devices = LibraryInterface::enumerate(DeviceType::All);
 if (2 != devices.size()) {
 cout << "Exactly two devices are required." << endl;
 return 1;
 }

 // As both devices can act as master,
 // we simply use the first one for this role.
 Device master = devices[0];
 master.open();
 cout << "Master: " << master.getSerialNumber()
 << "@" << master.getIdentifier() << endl;

 // ... and the second as slave.
 Device slave = devices[1];
 slave.open();
 cout << "Slave: " << slave.getSerialNumber()
 << "@" << slave.getIdentifier() << endl;

 // Configure both master and slave ...
 configure(master, slave);

 // ... and do the DAQ.

UG111 (v1.2) Sep 26, 2017 www.cesys.com 48

C++

 runDataAcquisition(master, slave);

 // Close both.
 master.close();
 slave.close();
 } catch (std::exception &ex) {
 cout << "Exception: " << ex.what() << endl;
 }
 return 0;
}

Description

Read the example bottom up, starting in the main() function. Nothing really new in
comparison to the previous examples, except that two devices are used concurrently.
Both devices gets opened and a short information about master and slave is printed to
the console.

What follows is the configuration, which is shown in function configure(). Trigger #0 of
the master device is set to output, alternating. This means, every time, the master
captures a frame, its first trigger toggles the level.

Trigger #0 (more: programming reference C++) of the slave is configured to work as
input, alternating as well. So the slave captures a frame if its first trigger detects that the
level has been toggled.
That's all for the trigger configuration. Function configure() completes the process by
setting up a frame using single ended input #0 and digital port #0 as described in
detail here.

Returned to main(), function runDataAcquisition() is invoked, which shows how data
from both master and slave is read. The most important part here is, how both DAQ
processes are started. The slave is started first, otherwise he may miss one or more
events. The slave is set to sample frames every time a trigger has been detected,
without any count limits. This is done calling
startContinuousExternalTimedDataAcquisition().
The master's DAQ is than started calling startContinuousDataAcquisition(), which
means, no frame count limitation at a specific frequency. The example uses a very low
frequency, 50 Hz, and starts immediately (By using false for
parameter externalStarted).

UG111 (v1.2) Sep 26, 2017 www.cesys.com 49

http://dev.cesys.com/en/support/bedienungsanleitungen/cebo/programming_reference/c/single_frame_input.html
http://dev.cesys.com/en/support/bedienungsanleitungen/cebo/programming_reference/c/class_reference/device.html#c1018

C++

At runtime, the master will than start to sample frames at the given 50 Hz, toggle
its Trigger every time, while the slave captures a frame every time this event is received
at his input trigger pin. Both capture frames synchronously.

The example continues by reading frames from both devices one after another until
both have returned at least 10 frames. Captured values are written to the console using
function dumpFrames(). The loop contains a 1 ms sleep, otherwise the usage of one
CPU core would go to 100%, which is never a good idea.

After the frames have been read, DAQ is stopped on both devices, calling
stopDataAcquisition(). The program returns to main() and close() both devices.

Info
This section simply outlines what information you can get from the API about the API
itself, the device and its peripherals.

// Put out some device specific information.
cout << "Device type: " << device.getDeviceType().getName() << endl;
cout << "USB base ver: " << LibraryInterface::getUsbBaseVersion() << endl;
cout << "API vers: " << LibraryInterface::getApiVersion() << endl;
cout << "Firmware ver: " << device.getFirmwareVersion() << endl;
cout << "Identifier: " << device.getIdentifier() << endl;
cout << "Serial number: " << device.getSerialNumber() << endl;
cout << "Temperature: " << device.getTemperature() << endl;

// Get the real current of the reference current sources.
for (size_t i = 0; i < device.getCurrentSources().size(); ++i) {
 CurrentSource source = device.getCurrentSources().at(i);
 cout << "Reference current of "
 << source.getName() << ": "
 << source.getReferenceCurrent() << " uA" << endl;
}

// Retrieve information about single ended input #0.
// This works on all analog inputs and outputs.
AnalogInput se0 = device.getSingleEndedInputs().at(0);
cout << "Info for single ended input " << se0.getName() << ":" << endl;
cout << " Current range: "
 << se0.getRange().getMinValue() << " V to "
 << se0.getRange().getMaxValue() << " V" << endl;
cout << " Supported ranges:" << endl;
for (size_t i = 0; i < se0.getSupportedRanges().size(); ++i) {
 Range range = se0.getSupportedRanges().at(i);

UG111 (v1.2) Sep 26, 2017 www.cesys.com 50

C++

 cout << " Range #" << i << " range: "
 << range.getMinValue() << " V to "
 << range.getMaxValue() << " V, "
 << "def. icd: "
 << se0.getDefaultInterChannelDelay(range) << " us"
 << endl;
}

// Get info for digital port #1.
DigitalPort dp1 = device.getDigitalPorts().at(1);
cout << "Info for digital port " << dp1.getName() << ":" << endl;
cout << " Count of I/O's: " << dp1.getIoCount() << endl;
for (int i = 0; i < dp1.getIoCount(); ++i) {
 cout << " I/O #" << i << ":" << dp1.getIoName(i) << endl;
}

Description

As most of the previous examples, this assumes an opened device as well. How to do
this is described in the programming reference C++.

The block in the upper part of the example writes any API or device specific information
to the console. The printed information is self-explanatory.
The first loop iterates over all CurrentSources of the connected device. For every
source, its real current value is printed out. These values were determined during
device calibration.

In the following block, information about single ended input #0 is printed out, which is
the active range setting, as well as all ranges that are valid for this port. All ranges
report their lower and upper bound using methods getMinValue() and getMaxValue().
This can be done for every AnalogInput and AnalogOutput.

The last part of the example prints information about digital port #1. The value retrieved
by getIoCount() is the number of I/O's that can be accessed by this DigitalPort. This
may vary between the individual ports a device has. The names of all its single I/O's are
printed as well.

Class Reference
The class reference is a complete but short overview of all classes and their methods
used in the C++ API. It does not outline how the components have to be used.

UG111 (v1.2) Sep 26, 2017 www.cesys.com 51

C++

The sections parallel to this topic show many practical examples and should be the first
you have to read to understand and use the API. A good starting point is topic “Basics”
in the programming reference C++.

Simple Types

Simple types are not classes that offer any functionality, but types that are just aliases
or empty base classes used to group elements.
These types are C++ specific and not all have similar counterparts in different language
implementations of the API.

Input
Used to group peripherals which can act as input.

Output
Used to group peripherals that can act as output.

InputVector
Alias for std::vector<Input>. To use this alias in a convenient way, operator<< has been
overloaded inside the API. So a list of inputs can be created as shown below:

// Build selection of
// - Single Ended Analog Input #0
// - Digital Port #1
// - Counter #0
InputVector inputs;
inputs
 << device.getSingleEndedInputs().at(0)
 << device.getDigitalPorts().at(1)
 << device.getCounters().at(0);

OutputVector
Alias for std::vector<Output>. To fill a list in a convenient way, operator<< has been
overloaded, so an instance can be filled in the same way as show above in the example
of inputs.

RangeVector
Alias for std::vector<Range>.

UG111 (v1.2) Sep 26, 2017 www.cesys.com 52

http://en.cppreference.com/w/cpp/container/vector
http://en.cppreference.com/w/cpp/container/vector
http://en.cppreference.com/w/cpp/container/vector

C++

AnalogInputVector
Alias to std::vector<AnalogInput>.

AnalogOutputVector
Alias to std::vector<AnalogOutput>.

DigitalPortVector
Alias to std::vector<DigitalPort>.

CounterVector
Alias to std::vector<Counter>.

TriggerVector
Alias to std::vector<Trigger>.

LedVector
Alias to std::vector<Led>.

CurrentSourceVector
Alias to std::vector<CurrentSource>.

InputFrameVector
Alias for std::vector<InputFrame>.

DeviceVector
Alias for std::vector<Device>.

DeviceType

This class is an enumeration of device types and device classes. Its static instances can
be used to control the enumeration process. Besides that, each device reports its class
using this type in method getDeviceType().

UG111 (v1.2) Sep 26, 2017 www.cesys.com 53

http://en.cppreference.com/w/cpp/container/vector
http://en.cppreference.com/w/cpp/container/vector
http://en.cppreference.com/w/cpp/container/vector
http://en.cppreference.com/w/cpp/container/vector
http://en.cppreference.com/w/cpp/container/vector
http://en.cppreference.com/w/cpp/container/vector
http://en.cppreference.com/w/cpp/container/vector
http://en.cppreference.com/w/cpp/container/vector
http://en.cppreference.com/w/cpp/container/vector

C++

static DeviceType All
Includes all known devices, independent which bus type is used. In the current stage,
this equals the following instance, Usb.

static DeviceType Usb
By using this instance in the enumeration process, all known devices connected via
USB are reported.

static DeviceType CeboLC
This instance must be specified if CEBO LC devices should be searched. In addition,
getDeviceType() of Device returns this if the device is of this type.

static DeviceType CeboStick
This instance must be specified if CEBO STICK devices should be searched. In
addition, getDeviceType() of Device returns this if the device is of this type.

std::string getName()
Returns the name of the instance as std::string, e.g. "CeboLC" for the CeboLC instance.

AnalogInput

This class is the host side interface to any analog input, so you have to use its methods
to request or modify the peripheral that this instance is assigned to.
Get an instance of this class by calling either getSingleEndedInputs() or
getDifferentialInputs() of the corresponding Device instance.

const RangeVector &getSupportedRanges() const
Returns the list of Ranges this input supports. You can use each of these
calling setParameters().

int getDefaultInterChannelDelay(const Range &range) const
Return the default interchannel delay (more: user guide CEBO-LC, Data acquisition,
interchannel delay) at the specified Range in microseconds.

int getMinInterChannelDelay() const
Return the minimal interchannel delay more: user guide CEBO-LC, Data acquisition,

UG111 (v1.2) Sep 26, 2017 www.cesys.com 54

http://en.cppreference.com/w/cpp/string

C++

interchannel delay) for this input in microseconds.

void setParameters(const Range &range) const
Sets the Range level on the analog input. Overwrites any previously
adjusted interchannel delay (more: user guide CEBO-LC, Data acquisition, interchannel
delay) with the default value.

int setParameters(const Range &range, int interChannelDelay) const
Set Range for this input. In addition, the interchannel delay (more: user guide CEBO-
LC, Data acquisition, interchannel delay) in microseconds is adjusted manually. The
returned value is the interchannel delay that is really used (as not all specified values
can be handled by the hardware).

Range getRange() const
Returns active range setting.

int getInterChannelDelay() const
Returns active interchannel delay (more: user guide CEBO-LC, Data acquisition,
interchannel delay).

float read() const
Returns voltage value from input directly (more: user guide CEBO-LC, Data acquisition,
single value I/O).

std::string getName() const
Returns the name of the input.

AnalogOutput

This class represents an analog output. You can get an instance of this class calling
getAnalogOutputs() from the corresponding Device.

const RangeVector &getSupportedRanges() const
Returns the list of Ranges this input supports. You can use each of these
calling setParameters().

UG111 (v1.2) Sep 26, 2017 www.cesys.com 55

C++

void setParameters(const Range &range) const
Sets the Range on the analog output.

Range getRange() const
Returns active range setting.

void write(float value) const
Directly (more: user guide CEBO-LC, Data acquisition, single value I/O) set the
specified voltage value on the output.

std::string getName() const
Returns the name of the output.

DigitalPort

This class is the interface to work with digital ports. Retrieve instances calling
getDigitalPorts() of the respective Device.

void setOutputEnableMask(int mask) const
Set bitwise mask that defines which of the I/O's on the specified port are input and
output. A bit of value 1 defines the specific I/O as output, e.g. mask = 0x03 means that
I/O 0 and 1 are set to output, while I/O 2 to n are inputs.

int getIoCount() const
Returns the count of I/O's of the specific port.

int read() const
Read the state of the I/O's of the port.

void write(int value) const
Modify the output I/O's of the specified port.

std::string getName() const
Returns the name of the port.

UG111 (v1.2) Sep 26, 2017 www.cesys.com 56

C++

std::string getIoName(int io) const
Returns the name of the I/O as specified by parameter io. The range of io is 0 <= io <
getIoCount().

Counter

Interface class to counters inside the device. Class instances can be retrieved calling
getCounters() of the specific Device.

void reset() const
Reset the counter to value 0.

void setEnabled(bool enabled) const
Enable or disable the counter. A disabled counter stays at the last value.

bool isEnabed() const
Return whether the counter is enabled or not.

void setConfig(CounterConfig counterConfig) const
Defines the counter behavior by using one of the constants specified
in Counter::CounterConfig, listed in the following table.

Counter::CounterConfig getConfig() const
Returns the current setup. One of the constants in enumerator
Counter::CounterConfig.

enum CounterConfig

• RisingEdge: Counter event is rising edge.

• FallingEdge: Counter event is falling edge.

• Alternating: Counter event are both rising and falling edges.

int64_t read() const
Read the current value of the counter.

std::string getName() const

UG111 (v1.2) Sep 26, 2017 www.cesys.com 57

C++

Returns the name of the counter.

Trigger

Class that represents a trigger inside the device. Instances can be retrieved by
calling getTriggers() of the respective Device.

void setEnabled(bool enabled) const
Enable or disable the trigger.

bool isEnabled() const
Return whether the trigger is enabled or not.

void setConfig(TriggerConfig triggerConfig) const
Defines the trigger behavior by using one of the constants specified in
Trigger::TriggerConfig, listed in the following table.

Trigger::TriggerConfig getConfig() const
Returns the current setup. One of the constants in enumerator Trigger::TriggerConfig.

enum TriggerConfig

• OutputPulse:Trigger is output. Every trigger-event generates a positive pulse

• OutputAlternating: Trigger is output. Every trigger-event toggles the level

• InputRisingEdge: Trigger is input, reacts on a rising edge

• InputFallingEdge: Trigger is input, reacts on falling edge

• InputAlternating: Trigger is input, reacts on rising and falling edge.

std::string getName() const
Returns the name of the trigger.

Range

Use when handling range settings. Valid setting for an AnalogInput or AnalogOutput can
be retrieved using their getSupportedRanges() method.

float getMinValue() const

UG111 (v1.2) Sep 26, 2017 www.cesys.com 58

C++

Returns the lower voltage of the specific range.

float getMaxValue() const
Returns the upper voltage of the specific range.

Led

Interface to the LED's on the board. Instances are accessed calling getLeds() of the
corresponding Device.

void setEnabled(bool enabled) const
Enable or disable the LED.

std::string getName() const
Returns the name of the LED.

CurrentSource

Class that represents the interface to the Fixed Current Outputs. Instances can be
retrieved using getCurrentSources() of the respective Device.

float getReferenceCurrent() const
Returns the actual value of the Fixed Current Output, which is determined during
manufacturing process and stored in onboard flash. The returned value is given in micro
ampere.

std::string getName() const
Returns the name of the current source.

InputFrame

The input frame is a data class which stores measured samples from all inputs a device
has (and which meet the frame concept). All samples inside a single frame are captured
in a very short time span (which depends on the underlying device). Only values that
have been selected using setupInputFrame() before sampling the frame are valid, the
other are set to 0 by default.

UG111 (v1.2) Sep 26, 2017 www.cesys.com 59

C++

float getSingleEnded(int index) const
Return the voltage value of single ended analog input using the specified index at the
moment the frame was sampled. This value is calibrated.

float getDifferential(int index) const
Return the voltage value of differential analog input using the specified index at the
moment the frame was sampled. This value is calibrated.

int getDigitalPort(int index) const
Return the I/O state of the digital port indicated by the given index at the moment the
frame has been sampled.

bool getTrigger(int index) const
Return the state of the Trigger as specified by the given index in the moment the frame
has been sampled.

int64_t getCounter(int index) const
Return the value of the Counter as specified by the given index.

OutputFrame

This class stores all values the should be set to the outputs as specified using
setupOutputFrame(). Calling one of its methods does not affect the hardware. This is
done when calling writeFrame(). An OutputFrame instance can't be created directly, as
its metrics depends on the underlying device. The instance can retrieved calling
createOutputFrame() of the device instance that should be used.

void setDigitalPort(int index, int value)
Set the bit mask for the DigitalPort as specified using index. Only bits set to output
using setOutputEnableMask() are affected.

void setAnalogOutput(int index, float value)
Define the voltage value that should be set to the AnalogOutput as specified by the
given index. The value will be calibrated before it is active.

UG111 (v1.2) Sep 26, 2017 www.cesys.com 60

C++

Device

This is the primary class of the framework. Each instance corresponds to one
physical device. The class is not intended to be instanced directly. Use the
method enumerate() of the class LibraryInterface to access instances.
Many of the methods are related to the device itself. Besides that, instances to all
device peripherals can be accessed.

void open()
This method must be called before doing anything with the device. Internally a
communication to the device is constructed and several initialization is done. Various
device and firmware specific constants are read and method resetDevice() is called.
To guarantee compatibility between API and device, if the major number of the device
firmware is higher than the major number of the API, open() will fail, a newer version of
the API must be used with this device.

void close()
This closes the connection to the device, frees all internal resources and allows the
device to be used by others (in the application instance and in different applications).
Calling close will never throw an exception, it will always fail silently.

void resetDevice()
Calling this will stop any hardware controlled processing and reset the device to its
power up settings. This is usually necessary if errors occur (Except logic or
communication errors).
Invoking this method in a multithreaded context should be done with extra care.

void resetPeripherals(int mask)
Resets specific peripherals on the device side. Parameter mask specifies which
elements using a bit mask. The bit mask must be constructed using the following flags,
which will be enhanced in future versions:

int Device::FlagResetInputFifo Clears the FIFO used during data acquisition and is
error flagged

std::string getIdentifier() const

UG111 (v1.2) Sep 26, 2017 www.cesys.com 61

C++

This returns a unique identifier to the device which is constructed using the physical
connection properties. It is guaranteed to be unique at runtime, as well as constant
between reboots of the operating system (except updates to the operating system
change the behavior how physical properties are enumerated).

Be aware: Plugging a device to a different location (e.g. different USB port) will change
this specifier, it is not device dependent. Use getSerialNumber() in this case.
This method can be called in front of invoking open().

DeviceType getDeviceType() const
Returns the specific type of the device that is bound to the instance. This is one of
class DeviceType static members.
This method can be called before invoking open().

std::string getFirmwareVersion() const
Returns the firmware version encoded as ASCII string, e.g. "1.0".

std::string getSerialNumber()
Returns the device serial number as string. This string is unique for each device.

float getTemperature()
Returns current temperature in °C of the device.

void setWatchdogTimeout(unsigned int &timeout)
Sets the watchdog timeout in 250ms steps. If enabled, the device reboots if no data
transfer has been done in the given time frame. Default value is 0xffffffff, which disables
this feature.

unsigned int getWatchdogTimeout() const
Read back current watchdog timeout value.

int calculateMaxBufferedInputFrames()
Depending on the specified inputs the device site buffer can store a limited amount of
frames. This method calculates the count of frames that will fit into this buffer using the
current frame setup, which is last set using setupInputFrame(). Modifying the frame
setup invalidates this value and must be updated invoking this method again. This value

UG111 (v1.2) Sep 26, 2017 www.cesys.com 62

C++

is primary intended to be used in context with startBufferedDataAcquisition().

void setupInputFrame(const InputVector &inputs)
When doing any form of frame based data acquisition, which is described in the user
guide for CEBO-LC (topic data acquisition), this method must be used to select the
inputs to be read. There's no limit which inputs can be selected, but every input can only
be specified once. This method can only be called if no multi frame based data
acquisition (more: user guide CEBO-LC, Data acquisition, multi frame DAQ) is active.
Any subsequent frame based call is affected by this setup.
The InputVector can contain any Instance that is derived from class Input, AnalogInput,
DigitalPort, Counter or Trigger.

float startBufferedDataAcquisition(float frameRate, int frameCount, bool
externalStarted)
Starts a buffered data acquisition at the specified frameRate for
exactly frameCount frames. If externalStarted is true, the acquisition is started at the
moment an external trigger event has been detected, immediately otherwise.
Parameter frameRate must be equal or smaller than the value reported by
calculateMaxBufferedInputFrames(). The returned value is the frame rate that is really
used, as not every possible frame rate can be handled by the device. This value is as
near as possible to the specified frame rate. Detailed description for this can be found in
the user guide CEBO-LC.

void startBufferedExternalTimedDataAcquisition(int frameCount)
Very similar to the method above, except that no frame rate is used the sample frame,
but every time an external trigger has been detected one single frame is sampled.
Acquisition is automatically stopped after the specified amount of frames has been
sampled. Detailed description for this can be found in the user guide CEBO-LC, topic
data acquisition, multi frame DAQ.

float startContinuousDataAcquisition(float frameRate, bool externalStarted)
Starts a data acquisition without frame limit. The host must read the sampled data as
fast as possible, otherwise buffer overflow is signaled and the process has been failed.
Frames are sampled at the specified frameRate. If externalStarted is true, sampling
starts at the first detected trigger event, immediately otherwise. The return value is the
frame rate that is really used, as not every possible rates are possible.

UG111 (v1.2) Sep 26, 2017 www.cesys.com 63

http://dev.cesys.com/en/support/bedienungsanleitungen/cebo/usb_messbox_cebo_lc/data_acquisition.html

C++

In a multithreaded context, it is advised to start reading frames before calling this
method.
More details about data acquisition can be found in the user manual CEBO-LC, topic
data acquisition, multi frame DAQ.

void startContinuousExternalTimedDataAcquisition()
Similar to the method above, but instead of a fixed frame rate, frames are sampled for
every detected trigger. Detailed information about this can be found in the user manual,
topic data acquisition, multi frame DAQ.

void stopDataAcquisition()
Stops a currently active data acquisition. The device buffer is not modified calling this,
so unread data can be fetched subsequently.

InputFrameVector readBlocking(int frameCount)
When doing multi frame data acquisition (more: user manual CEBO-LC, topic data
acquisition, multi frame DAQ), this is one method to read the sampled frames from
device to host. This version will block the current thread until the specified amount of
frames has been read, there's no timeout. After the call returns without an exception,
the returned InputFrameVector contains exactly the specified amount of InputFrames.
The alternative to this call is described below.

InputFrameVector readNonBlocking()
This method is similar to the one above, except that it always returns immediately, while
trying to read as much frames as possible. The returned InputFrameVector contains all
sampled InputFrames since the start of the data acquisition or the last frame read.
Especially for high data amounts, this method should be called cyclically without to high
delays.

InputFrame readFrame()
Read single frame as set up calling setupInputFrame() and return immediately. This
cannot be called if multi frame data acquisition (more: user guide CEBO-LC, topic data
acquisition, multi frame DAQ) is active.

void setupOutputFrame(const OutputVector &outputs)

UG111 (v1.2) Sep 26, 2017 www.cesys.com 64

C++

Specifies which Outputs are involved in the next frame output process. There's no limit
of the specified outputs, but no single instance can be used more than once. Valid
outputs that can be added to the OutputVector are AnalogOutput and DigitalPort.

void writeFrame(const OutputFrame &frame)
Set all outputs that have been selected using setupOutputFrame() in a single call. Data
to set on the respective outputs must be set in the given OutputFrame. The frame must
be constructed using method createOutputFrame() of the same device instance were it
is used.

OutputFrame createOutputFrame() const
Create an OutputFrame instance that fits to the device metrics from which instance the
method is called. The frame can than be filled with data and used
calling writeFrame() of the same device instance.

const AnalogInputVector &getSingleEndedInputs() const
Return list of all single ended inputs.

const AnalogInputVector &getDifferentialInputs() const
Return list of differential analog inputs.

const AnalogOutputVector &getAnalogOutputs() const
Return list of the analog outputs.
const DigitalPortVector &getDigitalPorts() const
Return list of digital ports.

const CounterVector &getCounters() const
Return list of counters.

const TriggerVector &getTriggers() const
Return list of triggers.

const CurrentSourceVector &getCurrentSources() const
Return list of current sources.

const LedVector &getLeds() const

UG111 (v1.2) Sep 26, 2017 www.cesys.com 65

C++

Return list of LED's.

LibraryInterface

This class contains static functionality only. Its responsibility is to serve as interface to
methods that are not bound to any device.

static std::string getApiVersion()
Report the version number of the underlying CeboMsr API encoded as ASCII string, i.e.
"1.0".

static std::string getUsbBaseVersion()
Return the version number of the system interface USB layer encoded as ASCII string,
i.e. "1.0".

static DeviceVector enumerate(const DeviceType &type)
The specified type parameter must be one of class DeviceType static members. The
system is than scanned for known devices and subsequently filtered to meet the
specified type. Devices that are already opened were skipped too. The returned list
contains all candidates that are ready for use.

For each instance that should be used, open() must be called.
Starting a new enumeration invalidates the list from the previous invocation.

UG111 (v1.2) Sep 26, 2017 www.cesys.com 66

Java

Java
The Java API is a thin layer on top of the CeboMsr API. It uses JNA to bind itself to the
dynamic link library.

Compatibility
The whole development has been done on Oracle(c) Java SE 6. Other JVM's may be
compatible as well.

External Dependencies
The only external dependency is JNA which can be found here on github. The version
that is used during development is 3.3.0.

Error handling
Any logical or runtime error that is reported by the CeboMsr API is transformed to an
exception. The following table lists all possible exception thrown by the Java
implementation of the CeboMsr API:

Exception Circumstances

IllegalArgumentException If any of the used parameters has an invalid value in the current
context.

IndexOutOfBoundsException When using an invalid index. (Most of these are prevented due to the
API design).

IllegalStateException Thrown if something is called which is not allowed in this stage.

IOException Indicates an unexpected behavior like communication problems with the
device.

As seen in the table above, all exceptions but IOException are unchecked exceptions,
so they are predictable at development time. In the case of IOException, human
investigation may be required to clarify the reason of the problem.
All exceptions contain a textual description of the problem.

UG111 (v1.2) Sep 26, 2017 www.cesys.com 67

https://github.com/twall/jna
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/
https://github.com/twall/jna

Java

Eclipse Project Setup
The following section will outline how you:

• Create a new Java project using Eclipse.

• Add the CeboMsr API to it.

• Enable inline JavaDoc for the API.

• Write a simple Java program that uses the CeboMsr API.

• Configure debugging to start the application.

The requirements are an installed JDK (1.6.33 used below) and a running Eclipse (3.7 -
Indigo used below).
First, create a new Java Project, name it CeboMsrTest and leave the rest of the
settings untouched.

Create a new folder inside the project, name it extern. Copy the following files into
it: cebomsr-{ver}-sources.jar, cebomsr-{ver}.jar and jna{var}.jar. Add the last two
files to the Build Path.

UG111 (v1.2) Sep 26, 2017 www.cesys.com 68

http://www.cesys.com/downloads/Cebo/jna3.3.0.jar
http://eclipse.org/downloads/
http://www.oracle.com/technetwork/java/javase/downloads/index.html

Java

To be able to debug into the API and to see the JavaDocs of the API, define the sources
for the API jar file. Do this bye configuring the Build Path for cebomsr-{ver}.jar.

UG111 (v1.2) Sep 26, 2017 www.cesys.com 69

Java

Select Source attachment beneath cebomsr-{ver}.jar and click on the Edit... button in
the right menu. Click on Workspace... in the new dialog and select cebomsr-{ver}-
sources.jar in the extern folder. Confirm all dialogs by clicking OK.

UG111 (v1.2) Sep 26, 2017 www.cesys.com 70

Java

Create a new Class, name it HelloCebo and put it into any package you like
(com.cesys.examples here). Select the checkbox to create a main method.

UG111 (v1.2) Sep 26, 2017 www.cesys.com 71

Java

As you can see in the screenshot, the JavaDoc information is shown while editing.

Here is the source of the example application. (Take attention if you have specified a
different package name and copy and paste the source. Just fix the package
specification.)

package com.cesys.examples;

import java.io.IOException;
import java.util.List;

import com.cesys.cebo.cebomsr.Device;
import com.cesys.cebo.cebomsr.DeviceType;
import com.cesys.cebo.cebomsr.LibraryInterface;

public class HelloCebo {
 /**
 * @param args

 */

UG111 (v1.2) Sep 26, 2017 www.cesys.com 72

Java

 public static void main(String[] args) {
 try {
 List<Device> devices = LibraryInterface.enumerate(DeviceType.All);
 if (!devices.isEmpty()) {
 Device d = devices.get(0);
 d.open();

 System.out.println("Voltage on AI-0: " +
 d.getSingleEndedInputs().get(0).read());

 d.close();

 }
 } catch (IOException e) {
 e.printStackTrace();

 }
 }
}

To start debugging, open the context menu on the example class and select Debug
Configurations...

Double Click on Java Application on the left side, this creates a debug session
named HelloCebo.

UG111 (v1.2) Sep 26, 2017 www.cesys.com 73

Java

Switch to the Arguments tab for the HelloCebo configuration. In the lower part are
settings for the working directory. Select a directory where the matching CeboMsr API
libraries can be found, on Windows this is cebomsr-{ver}-{arch}.dll and ceusbbase-
{ver}-{arch}.dll. {ver} of the cebomsr module must match the version of the used Java
API. {arch} depends on the used JVM architecture, not the architecture of the operating
system.

UG111 (v1.2) Sep 26, 2017 www.cesys.com 74

Java

Clicking on Debug will close the dialog and start the debug session.

UG111 (v1.2) Sep 26, 2017 www.cesys.com 75

Java

Basics
This section describes the first steps that are necessary to use the API. We start by
showing a basic example that:

• searches for all known devices

• grabs the first available device

• opens the device

• resets its state

• closes the device

import com.cesys.cebo.cebomsr.*;

...

// Search for devices ...
List<Device> devices = LibraryInterface.enumerate(DeviceType.All);

// If at least one has been found, use the first one ...
if (!devices.isEmpty()) {
 Device device = devices.get(0);

 // Open device, nothing can be done without doing this.
 device.open();

 ...

 // After some processing, the device can be resetted to its
 // power up condition.
 device.resetDevice();

 ...

 // Finalize device usage, this free's up the device, so it can be used
 // again, including other applications.
 device.close();

}

Description

The first lines in the example import the complete namespace to the source unit.

UG111 (v1.2) Sep 26, 2017 www.cesys.com 76

Java

In the application flow, enumeration must be always the first task when using the API. It
searches the system for known, not yet used devices and offers the caller a list of
device instances. The parameter that is used calling enumerate() of LibraryInterface
specifies which devices should be searched:

• All known devices (DeviceType.All)

• Device classes (e.g. DeviceType.Usb)

• Specific types (e.g. DeviceType.CeboLC)

We search for all devices in the example above. The returned list contains candidates of
type Device that can be used subsequently.
We use isEmpty() on the list to see if at least one device has been found. If a device
has been found, the if branch is entered, were we continue by using the first device.

The call to open() flags the device for use. Any new enumeration (before calling on the
same instance) will filter this instance. This is just a simple mechanism to prevent
double access to the same device.

After the device has been opened, it can be used in any way. Method resetDevice() is
shown here, because it has a superior role. It stops all active processing inside the
device and resets all configuration values to their startup condition. It is not necessary to
call it, but is a good way to reach a defined state i.e. in an error condition. It is implicitly
invoked when calling open().

At the end of the current scope, method close() is called to signal API and system that
the device is not used anymore. This is an important call, because leaving it in opened
state will prevent it from getting enumerated again.

UG111 (v1.2) Sep 26, 2017 www.cesys.com 77

Java

Single Value I/O
This section describes simple single input and output of values. It continues the
example from section Basics, so an opened device instance is available. Single value
I/O is described in the user guide CEBO-LC in detail.

// Read digital port #0 and write result to digital port #1 (mirror pins).
// At first, we need references to both ports.
DigitalPort dp0 = device.getDigitalPorts().get(0);
DigitalPort dp1 = device.getDigitalPorts().get(1);

// Configure port first, all bits of digital port #0 as input (default)
// and all bits of digital port #1 as output.
dp1.setOutputEnableMask(0xff);

// Read from #0 ...
int value = dp0.read();

// Write the value to #1 ...
dp1.write(value);

// Now some analog I/O, do it without any additional local references.
// Read single ended #0 input voltage ...
float voltageValue = device.getSingleEndedInputs().get(0).read();

// Write value to analog output #1
device.getAnalogOutputs().get(1).write(voltageValue);

UG111 (v1.2) Sep 26, 2017 www.cesys.com 78

Java

Description

If you want work with device peripherals, get instances using the various component
access methods of class Device. If more then one method must be called, create a local
reference, this reduces the amount of code to write. After you have an instance,
invocations to its methods affects this specific peripheral.

The example outlines how to read all I/O's of digital port #0 and mirror the result on port
#1. The first requirement to accomplish this is to define the direction of the individual
I/O's. By default, all I/O's are configured to be inputs, so the example shows how to set
all I/O's on port #1 as output, calling setOutputEnableMask() on its reference. All bits
that are '1' in the specified mask signal the I/O to be an output. This is all you have to do
for configuration.

The mirroring step is quite easy, read() the value from the instance that represents port
#0 and store it in a local integer. The result is subsequently used calling write() on the
instance the represents port #1.

The second half of the example outlines how to access peripherals without local copies
or references. This requires fewer but longer lines of code but has no behavioral
difference. Choose which style you prefer on your own.

The example continues doing direct single value I/O using analog peripherals. Like the
digital port part, an input is mirrored to an output.

The call to read() returns the calibrated voltage value on this input as float. Calling
write() on the AnalogOutput instance that represents analog output #1 using the
returned voltage value will directly modify the real output on the device.

UG111 (v1.2) Sep 26, 2017 www.cesys.com 79

Java

Single Frame Input
This section presents an example that samples a selection of inputs in a single process.
The difference to single value read is not that much on the coding side, but there's a
large improvement when it comes to performance. Reading more than one input costs
only an insignificant higher amount of time in comparison to single I/O.

Configuration of the individual peripherals is exactly the same, so setting the I/O
direction if digital ports or set the input range on an analog input is almost identical.

// Prepare and fill the list of inputs to read.
Input[] inputs = new Input[] {
 device.getSingleEndedInputs().get(0),
 device.getSingleEndedInputs().get(1),
 device.getDifferentialInputs().get(1),
 device.getDigitalPorts().get(0),
 device.getDigitalPorts().get(1),
 device.getCounters().get(0)
};

// Setup device with this selection.
device.setupInputFrame(inputs);

// Read the values multiple times and write them to the console.
for (int i = 0; i < 100; ++i) {
 // Read all inputs into the instance of InputFrame.
 InputFrame inFrame = device.readFrame();

 // Write results to the console.
 System.out.println(
 "DigitalPort #0: " + inFrame.getDigitalPort(0) + ", " +
 "DigitalPort #1: " + inFrame.getDigitalPort(1) + ", " +
 "SingleEnded #0: " + inFrame.getSingleEnded(0) + " V, " +
 "SingleEnded #1: " + inFrame.getSingleEnded(1) + " V, " +
 "Differential #1: " + inFrame.getDifferential(1) + " V, " +
 "Counter #0: " + inFrame.getCounter(0));
}

Description

The primary work for frame input I/O is to setup the device with the list of inputs that are
involved. An array which contains the inputs to sample is required.
The example does this in the upper part. It creates the array and add several inputs to
it:

UG111 (v1.2) Sep 26, 2017 www.cesys.com 80

Java

• Single ended analog input #0 and #1

• Differential analog input #1

• Digital ports #0 and #1

• Counter #0

•

This list is than used calling setupInputFrame(), which prepares the device with this
setup. This is active until:

• A call to resetDevice()

• The device is closed

• Or a new list is specified

•

In the subsequent loop, the specified inputs are sampled in every loop cycle using
method readFrame(). The call lasts until all inputs are sampled and returns the values
immediately in an instance of class InputFrame.

This instance holds all sampled values and offers methods to request them, which is
shown in the lower part of the example.

UG111 (v1.2) Sep 26, 2017 www.cesys.com 81

Java

Single Frame Output
In this section, concurrent modification of outputs will be outlined. In comparison to
single value I/O, this technique is very efficient when working with more than one single
output. As you can see in the following example, using it is quite straightforward.

// Write to analog out #1 and digital out #2 in one call.
// Prepare and set output selection.
Output[] outputs = new Output[] {
 device.getDigitalPorts().get(2),
 device.getAnalogOutputs().get(1)
};

// Prepare device ...
device.setupOutputFrame(outputs);

// Create instance of OutputFrame. There's no direct construction, as this
// instance may vary between different device types.
OutputFrame outFrame = device.createOutputFrame();

// Write it to hardware, modify contents in every looping.
for (int i = 0; i < 100; ++i) {
 outFrame.setAnalogOutput(1, (float)(3 * Math.sin((float)i / 100.f)));
 outFrame.setDigitalPort(2, i);

 device.writeFrame(outFrame);
}

Description

First of all, the example assumes that an opened instance of class Device is available,
as well as that DigitalPort #2 is configured to be output.
Similar to the other direction, the device must be set up with a list of outputs. This setup
is active until:

• A call to resetDevice()

• The device is closed

• Or a new list is set up
An array that contains the outputs to set is required. In the upper part of the example,
you can see the creation of this array, adding outputs DigitalPort #2
and AnalogOutput #1 to it and activate the setup using setupOutputFrame().

The subsequent call to createOutputFrame() creates an instance of type OutputFrame,

UG111 (v1.2) Sep 26, 2017 www.cesys.com 82

Java

which fits to the device metrics. There's no other way to create this type.

In the loop below, every cycle modifies the values of the outputs specified during setup.
This does not do anything other than storing the values inside the frame. The active
modification of the outputs is done using writeFrame(), which transfers the values to the
respective peripherals.

Multi Frame Input
This section describes how to read many frames at once, a very useful feature when
you want sample inputs at a constant frequency or using an external trigger. The API
offers very handy methods. The most problematic thing is to choose the right start
method including its parameters.

The example below samples five different inputs at a constant rate of 300 Hz, 20 x 25
frames, completely cached inside the device buffer.

// Construct selection that contains inputs to read from.
Input[] inputs = new Input[] {
 device.getSingleEndedInputs().get(0),
 device.getSingleEndedInputs().get(1),
 device.getDifferentialInputs().get(1),
 device.getDigitalPorts().get(0),
 device.getDigitalPorts().get(1)
};

// Prepare device with this collection ...
device.setupInputFrame(inputs);

// Start sampling ...
device.startBufferedDataAcquisition(300, 20 * 25, false);

// Read 20 x 25 frames using blocked read,
// this function returns after *all* (25) requested frames are collected.
for (int i = 0; i < 20; ++i) {
 // Read 25 frames ...
 List<InputFrame> frames = device.readBlocking(25);

 // Write out the 1st one.
 InputFrame inFrame = frames.get(0);
 System.out.println(
 "DigitalPort #0: " + inFrame.getDigitalPort(0) + ", " +
 "DigitalPort #1: " + inFrame.getDigitalPort(1) + ", " +
 "SingleEnded #0: " + inFrame.getSingleEnded(0) + " V, " +
 "SingleEnded #1: " + inFrame.getSingleEnded(1) + " V, " +

UG111 (v1.2) Sep 26, 2017 www.cesys.com 83

Java

 "Differential #1: " + inFrame.getDifferential(1) + " V");
}

// Stop the DAQ.
device.stopDataAcquisition();

Description

The first lines in this example are similar to single frame example. The device is set up
to sample the specified inputs into a single call. Single ended input #0 and #1,
differential input #1 and digital ports #0 and #1 are used here.

The real data acquisition is than started calling startBufferedDataAcquition(). Choosing
this method to start up, combined with the used parameters means the following:

• Data has to be completely stored in the device memory (buffered).

• Sampling is done using hardware timed capture at 300 Hz.

• The number of frames to capture is 20 x 25 = 500.

• No external trigger is necessary to initiate the process.

This method does not only configure the DAQ process, but start it as well. In the case of
buffered mode, this is really uncritical. If you require continuous mode, a buffer overrun
may occur shortly after starting the DAQ, so it is very important to either:

• Start to read the sampled frames immediately, as shown in the example.

• Use a second thread to read the frames, start this thread before the DAQ is started.

The example continues with a for loop where every cycle reads 25 frames and outputs
the sampled values of the first frame in this block. The used method Device|
outline returns after the given amount of frames has been read and stalls the thread up
to this point. Use readBlocking() with care, because it has two downsides:

• It blocks the access to the whole API due to internal thread locking mechanisms.

• If the specified amount of frames is too small, especially at higher frame rates,
buffer overruns on the device side will occur, as the call and transfer overhead is
too high.

It is a very convenient way to read a defined number of frames. The alternative is the
use readNonBlocking(), which returns immediately with all captured frames at the
moment of calling.

UG111 (v1.2) Sep 26, 2017 www.cesys.com 84

Java

Both read methods return the list of captured frames. The example uses the first frame
of this block (which is guaranteed to contain 25 frames in the example), and output the
sampled values of all specified inputs to the console.

At the end of the example, DAQ is stopped using stopDataAcquisition().

Counter
The example below shows how to use a counter. To allow this using software, a
wired connection between IO-0 and CNT is necessary. IO-0 is used to generate the
events that the counter should count.

// Create local copies, this shortens the source.
DigitalPort dp0 = device.getDigitalPorts().get(0);
Counter cnt = device.getCounters().get(0);

// Set IO-0 as output.
dp0.setOutputEnableMask(0x01);

// Enable the counter.
cnt.setEnabled(true);

// Check the counters current value.
System.out.println("Counter before starting: " + cnt.read());

// Pulse IO-0 3 times.
for (int i = 0; i < 3; ++i) {
 dp0.write(0x01);
 dp0.write(0x00);
}

// Check the counters current value.
System.out.println("Counter should be 3: " + cnt.read());

// Reset and ...
cnt.reset();

// ... disable the counter.
cnt.setEnabled(false);

// Check the counters current value.
System.out.println("Counter should be 0: " + cnt.read());

// Pulse IO-0 3 times, the counter should ignore these pulses.
for (int i = 0; i < 3; ++i) {
 dp0.write(0x01);
 dp0.write(0x00);

UG111 (v1.2) Sep 26, 2017 www.cesys.com 85

Java

}

// Check the counters current value.
System.out.println("Counter should still be 0: " + cnt.read());

Description

Like most of the previous examples, an instance of class Device is required. This can
be retrieved using the procedure described here. To demonstrate the counter without
external peripherals, the software controls the events for the counter as well. This
extends the example to around twice its size, but its still easy to understand.

To reduce the amount of code, dp0 and cnt are constructed as local copies of both the
first DigitalPort and the Counter.

The LSB of digital port #0 represents IO-0. To modify IO-0 via software, the example
continues to set this I/O as output using method setOutputEnableMask().

Counters are disabled by default, so the next required task is to enable it, otherwise no
event will be detected. The example does this by calling setEnabled() of
the Counter instance.

The first counter value that is printed out will be zero, which is the default value after
startup or reset.

The counter reacts on every rising edge. The example shows this by pulsing IO-0 three
times, setting its level high and than low in every loop cycle. The result is than printed to
the console. It is expected to be three, based on the pulses in the previous loop (If not,
verify the wired connection between IO-0 and CNT).

The value of the counter is than set to zero calling its reset() method. In addition,
 deactivates the counter to any event.

The remaining example code outlines this, by pulsing IO-0 three times again, but the
console output shows that now flanks have been counted in this state.

UG111 (v1.2) Sep 26, 2017 www.cesys.com 86

Java

Trigger
The following example is much longer than the previous, but outlines various new
things:

• Working with multiple devices.

• Use different multi frame modes.

• Show how to use triggers in input and output mode.
You will need two devices for this example to run, as both devices are chained together
using triggers. The first device acts as master, while the second device is the slave.
Every time, the master samples a frame, an output trigger is generated, while the slave
captures its frame if this trigger has been raised.

Devices must be connected to each other using two wires. Ground (GND) to ground
and trigger (TRG) to trigger.

TIP #1: This example can easily be extended to support more than one slave, you only
have to set up each slave the same way as the slave in the example.

TIP #2: At high bandwidth, it may be necessary to put the individual readNonBlocking()
calls to separate threads. Otherwise reading the data from one device may last as long
as the device side buffer on the second device will need to overflow.

The description is located below the example.

public class TriggerExample {

 /**
 * Write frames to console.
 * @param device Device string.
 * @param frames Frame to dump.
 */
 private void dumpFrames(String device, List<InputFrame> frames) {
 for (InputFrame f : frames) {
 System.out.println(device + ": " +
 "se#0: " + f.getSingleEnded(0) + " V, " +
 "dp#0: " + f.getDigitalPort(0));
 }
 }

 /**
 * Start DAQ, read frames and output the results.

UG111 (v1.2) Sep 26, 2017 www.cesys.com 87

Java

 * @param master Master device.
 * @param slave Slave device.
 * @throws IOException
 */
 void runDataAcquisition(Device master, Device slave) throws IOException {
 // The slave must be started first, as it reacts on the master's
 // trigger. Continuous DAQ is used. Timed using an external trigger.
 slave.startContinuousExternalTimedDataAcquisition();

 // The master uses hardware timed DAQ, continuous at 50 Hz.
 // The 'false' here signals that the process should start immediately.
 master.startContinuousDataAcquisition(50, false);

 // The example reads at least 10 frames from
 // both devices and subsequently output the samples.
 int masterFrames = 0, slaveFrames = 0;
 while (masterFrames < 10 || slaveFrames < 10) {
 // Start by reading frames from master,
 // output it and increment counter.
 List<InputFrame> frames = master.readNonBlocking();
 dumpFrames("master", frames);
 masterFrames += (int)frames.size();

 // Do the same with the slave.
 frames = slave.readNonBlocking();
 dumpFrames("slave", frames);
 slaveFrames += (int)frames.size();

 // Don't poll to frequent, this would fully utilize one core.
 try {
 Thread.sleep(1);
 } catch (InterruptedException ex) {}
 }

 // Finished, gracefully stop DAQ.
 slave.stopDataAcquisition();
 master.stopDataAcquisition();
 }

 /**
 * Both devices are fully configured here.
 * @param master Master device.
 * @param slave Slave device.
 * @throws IOException
 */
 void configure(Device master, Device slave) throws IOException {
 // The trigger for the master must be set to alternating output.
 master.getTriggers().get(0).setConfig(TriggerConfig.OutputAlternating);

 // The slave's trigger must be set to alternating as well.
 slave.getTriggers().get(0).setConfig(TriggerConfig.InputAlternating);

UG111 (v1.2) Sep 26, 2017 www.cesys.com 88

Java

 // Both devices now gets configured to the same input frame layout.
 master.setupInputFrame(new Input[] {
 master.getSingleEndedInputs().get(0),
 master.getDigitalPorts().get(0)
 });

 // ... slave
 slave.setupInputFrame(new Input[] {
 slave.getSingleEndedInputs().get(0),
 slave.getDigitalPorts().get(0)
 });
 }

 /**
 * The examples main method.
 */
 private void runExample() {
 try {
 // Search for the devices, exactly two are required.
 List<Device> devices = LibraryInterface.enumerate(DeviceType.All);
 if (2 != devices.size()) {
 System.out.println("Exactly two devices are required.");
 return;
 }

 // As both devices can act as master,
 // we simply use the first one for this role.
 Device master = devices.get(0);
 master.open();
 System.out.println("Master: " + master.getSerialNumber() +
 "@" + master.getIdentifier());

 // ... and the second as slave.
 Device slave = devices.get(1);
 slave.open();
 System.out.println("Slave: " + slave.getSerialNumber() +
 "@" + slave.getIdentifier());

 // Configure both master and slave ...
 configure(master, slave);

 // ... and do the DAQ.
 runDataAcquisition(master, slave);

 // Close both.
 master.close();
 slave.close();
 }
 catch (IOException ex) {
 ex.printStackTrace();
 }
 }

UG111 (v1.2) Sep 26, 2017 www.cesys.com 89

Java

 public static void main(String[] args) {
 new TriggerExample().runExample();
 }
}

Description

Read the example bottom up, starting in the runExample() method. Nothing really new
in comparison to the previous examples, except that two devices are used concurrently.
Both devices gets opened and a short information about master and slave is printed to
the console.

What follows is the configuration, which is shown in method configure(). Trigger #0 of
the master device is set to output, alternating. This means, every time, the master
captures a frame, its first trigger toggles the level.

Trigger #0 of the slave is configured to work as input, alternating as well. So the slave
captures a frame if its first trigger detects that the level has been toggled.
That's all for the trigger configuration. Method configure() completes the process by
setting up a frame using single ended input #0 and digital port #0 as described in
detail here.

Returned to runExample(), method runDataAcquisition() is invoked, which shows
how data from both master and slave is read. The most important part here is, how both
DAQ processes are started. The slave is started first, otherwise he may miss one or
more events. The slave is set to sample frames every time a trigger has been detected,
without any count limits. This is done calling
startContinuousExternalTimedDataAcquisition().

The master's DAQ is than started calling startContinuousDataAcquisition(), which
means, no frame count limitation at a specific frequency. The example uses a very low
frequency, 50 Hz, and starts immediately (By using false for parameter
externalStarted).

At runtime, the master will than start to sample frames at the given 50 Hz, toggle
its Trigger every time, while the slave captures a frame every time this event is received
at his input trigger pin. Both capture frames synchronously.

UG111 (v1.2) Sep 26, 2017 www.cesys.com 90

Java

The example continues by reading frames from both devices one after another until
both have returned at least 10 frames. Captured values are written to the console using
method dumpFrames(). The loop contains a 1 ms sleep, otherwise the usage of one
CPU core would go to 100%, which is never a good idea.

After the frames have been read, DAQ is stopped on both devices, calling
stopDataAcquisition(). The program returns to runExample() and close() both devices.

Info
This section simply outlines what information you can get from the API about the API
itself, the device and its peripherals.

// Put out some device specific information.
System.out.println("Device type: " + device.getDeviceType().getName());
System.out.println("USB base ver: " + LibraryInterface.getUsbBaseVersion());
System.out.println("API vers: " + LibraryInterface.getApiVersion());
System.out.println("Firmware ver: " + device.getFirmwareVersion());
System.out.println("Identifier: " + device.getIdentifier());
System.out.println("Serial number: " + device.getSerialNumber());
System.out.println("Temperature: " + device.getTemperature());

// Get the real current of the reference current sources.
for (CurrentSource source : device.getCurrentSources()) {
 System.out.println("Reference current of "
 + source.getName() + ": "
 + source.getReferenceCurrent() + " uA");
}

// Retrieve information about single ended input #0.
// This works on all analog inputs and outputs.
AnalogInput se0 = device.getSingleEndedInputs().get(0);
System.out.println("Info for single ended input " + se0.getName() + ":");
System.out.println("Min. ICD: " + se0.getMinInterChannelDelay() + " us");
System.out.println(" Current range: "
 + se0.getRange().getMinValue() + " V to "
 + se0.getRange().getMaxValue() + " V");
 System.out.println("Supported ranges:");
for (int i = 0; i < se0.getSupportedRanges().size(); ++i) {
 Range range = se0.getSupportedRanges().get(i);
 System.out.println(" Range #" + i + " range: "
 + range.getMinValue() + " V to "
 + range.getMaxValue() + " V, "
 + "Def. ICD: "
 + se0.getDefaultInterChannelDelay(range) + " us");

UG111 (v1.2) Sep 26, 2017 www.cesys.com 91

Java

}

// Get info for digital port #1.
DigitalPort dp1 = device.getDigitalPorts().get(1);
System.out.println("Info for digital port " + dp1.getName() + ":");
System.out.println(" Count of I/O's: " + dp1.getIoCount());
for (int i = 0; i < dp1.getIoCount(); ++i) {
 System.out.println(" I/O #" + i + ":" + dp1.getIoName(i));
}

Description

As most of the previous examples, this assumes an opened device as well. How to do
this is described here.

The block in the upper part of the example writes any API or device specific information
to the console. The printed information is self-explanatory.

The first loop iterates over all CurrentSources of the connected device. For every
source, its real current value is printed out. These values were determined during
device calibration.

In the following block, information about single ended input #0 is printed out, which is
the active range setting, as well as all ranges that are valid for this port. All ranges
report their lower and upper bound using methods getMinValue() and getMaxValue().
This can be done for every AnalogInput and AnalogOutput.

The last part of the example prints information about digital port #1. The value retrieved
by getIoCount() is the number of I/O's that can be accessed by this DigitalPort. This
may vary between the individual ports a device has. The names of all its single I/O's are
printed as well.

Class Reference
The class reference is a complete but short overview of all classes and their methods
used in the Java API. It does not outline how the components have to be used.

The sections parallel to this topic show many practical examples and should be the first
you have to read to understand and use the API. A good starting point is this topic.

UG111 (v1.2) Sep 26, 2017 www.cesys.com 92

Java

Interfaces

Both interfaces below are used to group input- and output peripherals.

interface Input
Used to group peripherals which can act as input.

interface Output
Used to group peripherals which can act as output.

DeviceType

This class is an enumeration of device types and device classes. Its static instances can
be used to control the enumeration process. Besides that, each device reports its class
using this type in method getDeviceType().

final static DeviceType All
Includes all known devices, independent which bus type is used. In the current stage,
this equals the following instance, Usb.

final static DeviceType Usb
By using this instance in the enumeration process, all known devices connected via
USB are reported.

final static DeviceType CeboLC
This instance must be specified if CEBO LC devices should be searched. In
addition, getDeviceType() of Device returns this if the device is of this type.

final static DeviceType CeboStick
This instance must be specified if CEBO STICK devices should be searched. In
addition, getDeviceType() of Device returns this if the device is of this type.

String getName()
Returns the name, e.g. "CeboLC" for the CeboLC instance.

UG111 (v1.2) Sep 26, 2017 www.cesys.com 93

Java

AnalogInput

This class is the host side interface to any analog input, so you have to use its methods
to request or modify the peripheral that this instance is assigned to. Get an instance of
this class by calling either getSingleEndedInputs() or getDifferentialInputs() of the
corresponding Device instance.

List<Range> getSupportedRanges()
Returns the list of Ranges this input supports. You can use each of these calling
setParameters().

int getDefaultInterChannelDelay(Range range)
Return the default interchannel delay at the specified Range in microseconds.

int getMinInterChannelDelay()
Return the minimal interchannel delay for this input in microseconds.

void setParameters(Range range)
Sets the Range level on the analog input. Overwrites any previously adjusted
interchannel delay with the default value.

int setParameters(Range range, int interChannelDelay)
Set Range for this input. In addition, the interchannel delay in microseconds is adjusted
manually. The returned value is the interchannel delay that is really used (as not all
specified values can be handled by the hardware).

Range getRange()
Returns active range setting.

int getInterChannelDelay()
Returns active interchannel delay.

float read()
Returns voltage value from input directly (more: user guide Cebo LC; data acquisition;
single value I/O)

UG111 (v1.2) Sep 26, 2017 www.cesys.com 94

http://dev.cesys.com/en/support/bedienungsanleitungen/cebo/programming_reference/java/class_reference/device.html

Java

String getName()
Returns the name of the input.

AnalogOutput

This class represents an analog output. You can get an instance of this class calling
getAnalogOutputs() from the corresponding Device.

List<Range> getSupportedRanges()
Returns the list of Ranges this input supports. You can use each of these calling
setParameters().

void setParameters(Range range)
Sets the Range on the analog output.

Range getRange()
Returns active range setting.

void write(float value)
Directly set the specified voltage value on the output.

String getName()
Returns the name of the output.

DigitalPort

This class is the interface to work with digital ports. Retrieve instances calling
getDigitalPorts() of the respective Device.

void setOutputEnableMask(int mask)
Set bitwise mask that defines which of the I/O's on the specified port are input and
output. A bit of value 1 defines the specific I/O as output, e.g. mask = 0x03 means that
I/O 0 and 1 are set to output, while I/O 2 to n are inputs.

int getIoCount()
Returns the count of I/O's of the specific port.

UG111 (v1.2) Sep 26, 2017 www.cesys.com 95

Java

int read()
Read the state of the I/O's of the port.

void write(int value)
Modify the output I/O's of the specified port.

String getName()
Returns the name of the port.

String getIoName(int io)
Returns the name of the I/O as specified by parameter io. The range of io is 0 <= io <
getIoCount().

UG111 (v1.2) Sep 26, 2017 www.cesys.com 96

Java

Counter

Interface class to counters inside the device. Class instances can be retrieved calling
getCounters() of the specific Device.

void reset()
Reset the counter to value 0.

void setEnabled(boolean enabled)
Enable or disable the counter. A disabled counter stays at the last value.

boolean isEnabled()
Return whether the counter is enabled or not.

void setConfig(Counter.CounterConfig counterConfig)
Defines the counter behavior by using one of the constants specified
in Counter.CounterConfig, listed in the following enumeration.

Counter.CounterConfig getConfig()
Returns the current setup. One of the constants in enumerator
Counter.CounterConfig.

enum CounterConfig

• RisingEdge: Counter event is rising edge.

• FallingEdge: Counter event is falling edge.

• Alternating: Counter event are both rising and falling edges.

long read()
Read the current value of the counter.

String getName()
Returns the name of the counter.

UG111 (v1.2) Sep 26, 2017 www.cesys.com 97

Java

Trigger

Class that represents a trigger inside the device. Instances can be retrieved by calling
getTriggers() of the respective Device.

void setEnabled(booean enabled)
Enable or disable the trigger.

boolean isEnabled()
Return whether the trigger is enabled or not.

void setConfig(Trigger.TriggerConfig triggerConfig)
Defines the trigger behavior by using one of the constants specified in
Trigger.TriggerConfig, listed in the following enumeration.

Trigger.TriggerConfig getConfig()
Returns the current setup. One of the constants in enumerator Trigger.TriggerConfig.

enum TriggerConfig

• OutputPulse:Trigger is output. Every trigger-event generates a positive pulse

• OutputAlternating: Trigger is output. Every trigger-event toggles the level

• InputRisingEdge: Trigger is input, reacts on a rising edge

• InputFallingEdge: Trigger is input, reacts on falling edge

• InputAlternating: Trigger is input, reacts on rising and falling edge.

String getName()
Returns the name of the trigger.

UG111 (v1.2) Sep 26, 2017 www.cesys.com 98

Java

Range

Use when handling range settings. Valid setting for an AnalogInput or AnalogOutput can
be retrieved using their getSupportedRanges() method.

float getMinValue()
Returns the lower voltage of the specific range.

float getMaxValue()
Returns the upper voltage of the specific range.

Led

Interface to the LED's on the board. Instances are accessed calling getLeds() of the
corresponding Device.

void setEnabled(boolean enabled)
Enable or disable the LED.

String getName()
Returns the name of the LED.

CurrentSource

Class that represents the interface to the Fixed Current Outputs. Instances can be
retrieved using getCurrentSources() of the respective Device.

float getReferenceCurrent()
Returns the actual value of the Fixed Current Output, which is determined during
manufacturing process and stored in onboard flash. The returned value is given in micro
ampere.

String getName()
Returns the name of the current source.

UG111 (v1.2) Sep 26, 2017 www.cesys.com 99

http://dev.cesys.com/en/support/bedienungsanleitungen/cebo/programming_reference/c/class_reference/device.html#c1138

Java

InputFrame

The input frame is a data class which stores measured samples from all inputs a device
has (and which meet the frame concept). All samples inside a single frame are captured
in a very short time span (which depends on the underlying device). Only values that
have been selected using setupInputFrame() before sampling the frame are valid, the
other are set to 0 by default.

float getSingleEnded(int index)
Return the voltage value of single ended analog input using the specified index at the
moment the frame was sampled. This value is calibrated.

float getDifferential(int index)
Return the voltage value of differential analog input using the specified index at the
moment the frame was sampled. This value is calibrated.

int getDigitalPort(int index)
Return the I/O state of the digital port indicated by the given index at the moment the
frame has been sampled.

boolean getTrigger(int index)
Return the state of the Trigger as specified by the given index in the moment the frame
has been sampled.

long getCounter(int index)
Return the value of the Counter as specified by the given index.

UG111 (v1.2) Sep 26, 2017 www.cesys.com 100

Java

OutputFrame

This class stores all values the should be set to the outputs as specified using
setupOutputFrame(). Calling one of its methods does not affect the hardware. This is
done when calling writeFrame(). An OutputFrame instance can't be created directly, as
its metrics depends on the underlying device. The instance can retrieved calling
createOutputFrame() of the device instance that should be used.

void setDigitalPort(int index, int value)
Set the bit mask for the DigitalPort as specified using index. Only bits set to output
using setOutputEnableMask() are affected.

void setAnalogOutput(int index, float value)
Define the voltage value that should be set to the AnalogOutput as specified by the
given index. The value will be calibrated before it is active.

Device

This is the primary class of the framework. Each instance corresponds to one physical
device. The class is not intended to be instanced directly. Use the method enumerate()
of the class LibraryInterface to access instances. Many of the methods are related to
the device itself. Besides that, instances to all device peripherals can be accessed.

void open()
This method must be called before doing anything with the device. Internally a
communication to the device is constructed and several initialization is done. Various
device and firmware specific constants are read and method resetDevice() is called. To
guarantee compatibility between API and device, if the major number of the device
firmware is higher than the major number of the API, open() will fail, a newer version of
the API must be used with this device.

void close()
This closes the connection to the device, frees all internal resources and allows the
device to be used by others (in the application instance and in different applications).
Calling close will never throw an exception, it will always fail silently.

UG111 (v1.2) Sep 26, 2017 www.cesys.com 101

Java

void resetDevice()
Calling this will stop any hardware controlled processing and reset the device to its
power up settings. This is usually necessary if errors occur (Except logic or
communication errors). Invoking this method in a multithreaded context should be done
with extra care.

void resetPeripherals(int mask)
Resets specific peripherals on the device side. Parameter mask specifies which
elements using a bit mask. The bit mask must be constructed using the following flags,
which will be enhanced in future versions:

int Device.FlagResetInputFifo Clears the FIFO used during data acquisition and its
error flags.

String getIdentifier()
This returns a unique identifier to the device which is constructed using the physical
connection properties. It is guaranteed to be unique at runtime, as well as constant
between reboots of the operating system (except updates to the operating system
change the behavior how physical properties are enumerated).

Be aware: Plugging a device to a different location (e.g. different USB port) will change
this specifier, it is not device dependent. Use getSerialNumber() in this case.
This method can be called in front of invoking open().

DeviceType getDeviceType()
Returns the specific type of the device that is bound to the instance. This is one of
class DeviceType static members.
 This method can be called before invoking open().

String getFirmwareVersion()
Returns the firmware version encoded as string, e.g. "1.0".

String getSerialNumber()
Returns the device serial number as string. This string is unique for each device.

UG111 (v1.2) Sep 26, 2017 www.cesys.com 102

Java

float getTemperature()
Returns current temperature in °C of the device.

void setWatchdogTimeout(long &timeout)
Sets the watchdog timeout in 250ms steps. If enabled, the device reboots if no data
transfer has been done in the given time frame. Default value is 0xffffffff, which disables
this feature.

long getWatchdogTimeout() const
Read back current watchdog timeout value.

int calculateMaxBufferedInputFrames()
Depending on the specified inputs the device site buffer can store a limited amount of
frames. This method calculates the count of frames that will fit into this buffer using the
current frame setup, which is last set using setupInputFrame(). Modifying the frame
setup invalidates this value and must be updated invoking this method again. This value
is primary intended to be used in context with startBufferedDataAcquisition().

void setupInputFrame(Input[] inputs)
When doing any form of frame based data acquisition, which is described in the user
guide CEBO-LC, this method must be used to select the inputs to be read. There's no
limit which inputs can be selected, but every input can only be specified once. This
method can only be called if no multi frame based data acquisition is active.

Any subsequent frame based call is affected by this setup.

The input array can contain any instance that implements Input, AnalogInput,
DigitalPort, Counter or Trigger.

float startBufferedDataAcquisition(float frameRate, int frameCount, boolean
externalStarted)
Starts a buffered data acquisition at the specified frameRate for exactly frameCount
frames. If externalStarted is true, the acquisition is started at the moment an external
trigger event has been detected, immediately otherwise. Parameter frameRate must be
equal or smaller than the value reported by calculateMaxBufferedInputFrames(). The
returned value is the frame rate that is really used, as not every possible frame rate can

UG111 (v1.2) Sep 26, 2017 www.cesys.com 103

Java

be handled by the device. This value is as near as possible to the specified frame rate.
Detailed description for this can be found in the user manual for CEBO LC (data
acquisition; multi frame DAQ.

void startBufferedExternalTimedDataAcquisition(int frameCount)
Very similar to the method above, except that no frame rate is used the sample frame,
but every time an external trigger has been detected one single frame is sampled.
Acquisition is automatically stopped after the specified amount of frames has been
sampled. Detailed description for this can be found n the user manual for CEBO LC
(data acquisition; multi frame DAQ).

float startContinuousDataAcquisition(float frameRate, boolean externalStarted)
Starts a data acquisition without frame limit. The host must read the sampled data as
fast as possible, otherwise buffer overflow is signaled and the process has been failed.
Frames are sampled at the specified frameRate. If externalStarted is true, sampling
starts at the first detected trigger event, immediately otherwise. The return value is the
frame rate that is really used, as not every possible rates are possible.

In a multithreaded context, it is advised to start reading frames before calling this
method.

More details about data acquisition can be foundn the user manual for CEBO LC (data
acquisition; mult frame DAQ).

void startContinuousExternalTimedDataAcquisition()
Similar to the method above, but instead of a fixed frame rate, frames are sampled for
every detected trigger. Detailed information about this can be found n the user manual
for CEBO LC (data acquisition; mult frame DAQ).

void stopDataAcquisition()
Stops a currently active data acquisition. The device buffer is not modified calling this,
so unread data can be fetched subsequently.

List<InputFrame> readBlocking(int frameCount)
When doing multi frame data acquisition, this is one method to read the sampled frames
from device to host. This version will block the current thread until the specified amount

UG111 (v1.2) Sep 26, 2017 www.cesys.com 104

Java

of frames has been read, there's no timeout. After the call returns without an exception,
the returned list contains exactly the specified amount of InputFrames. The alternative
to this call is described below.

List<InputFrame> readNonBlocking()
This method is similar to the one above, except that it always returns immediately, while
trying to read as much frames as possible. The returned list contains all sampled
InputFrames since the start of the data acquisition or the last frame read. Especially for
high data amounts, this method should be called cyclically without to high delays.

InputFrame readFrame()
Read single frame as set up calling setupInputFrame() and return immediately. This
cannot be called if multi frame data acquisition is active.

void setupOutputFrame(Output[] outputs)
Specifies which Outputs are involved in the next frame output process. There's no limit
of the specified outputs, but no single instance can be used more than once. Valid
outputs that can be added to the list are AnalogOutput and DigitalPort.

void writeFrame(OutputFrame frame)
Set all outputs that have been selected using setupOutputFrame() in a single call. Data
to set on the respective outputs must be set in the given OutputFrame. The frame must
be constructed using method createOutputFrame() of the same device instance were it
is used.

OutputFrame createOutputFrame()
Create an OutputFrame instance that fits to the device metrics from which instance the
method is called. The frame can than be filled with data and used calling writeFrame()
of the same device instance.

List<AnalogInput> getSingleEndedInputs()
Return list of all single ended inputs.

List<AnalogInput> getDifferentialInputs()
Return list of differential analog inputs.

UG111 (v1.2) Sep 26, 2017 www.cesys.com 105

Java

List<AnalogOutput> getAnalogOutputs()
Return list of the analog outputs.

List<DigitalPort> getDigitalPorts()
Return list of digital ports.

List<Counter> getCounters()
Return list of counters.

List<Trigger> getTriggers()
Return list of triggers.

List<CurrentSource> getCurrentSources()
Return list of current sources.

List<Led> getLeds()
Return list of LED's.

LibraryInterface

This class contains static functionality only. Its responsibility is to serve as interface to
methods that are not bound to any device.

String getApiVersion()
Report the version number of the underlying CeboMsr API string, i.e. "1.0".

String getUsbBaseVersion()
Return the version number of the system interface USB layer string, i.e. "1.0".

List<Device> enumerate(DeviceType type)
The specified type parameter must be one of class DeviceType static members. The
system is than scanned for known devices and subsequently filtered to meet the
specified type. Devices that are already opened were skipped too. The returned list
contains all candidates that are ready for use.

UG111 (v1.2) Sep 26, 2017 www.cesys.com 106

Java

For each instance that should be used, open() must be called.

Starting a new enumeration invalidates the list from the previous invocation.

UG111 (v1.2) Sep 26, 2017 www.cesys.com 107

Python

Python
The Python API is a thin layer on top of the CeboMsr API. It uses ctypes to bind itself to
the dynamic link library.

Compatibility
The API has been tested with Python 2.7 and 3.2, both branches are supported.

External Dependencies
The API is based on ctypes, which is part of the standard Python library, no additional
libraries are required.

Error Handling
Any logical or runtime error that is reported by the CeboMsr API is transformed to an
exception. The following table lists all possible exception thrown by the Python
implementation of the CeboMsr API:

Exception Circumstances

AttributeError If any of the used parameters has an invalid value in the current context.

IndexError When using an invalid index. (Most of these are prevented due to the API
design).

SystemError Thrown if something is called which is not allowed in this stage.

IOError Indicates an unexpected behavior like communication problems with the
device.

All exceptions contain a textual description of the problem.

UG111 (v1.2) Sep 26, 2017 www.cesys.com 108

Python

Basics
This section describes the first steps that are necessary to use the API. We start by
showing a basic example that:

• searches for all known devices

• grabs the first available device

• opens the device

• resets its state

• closes the device

from CeboMsrApiPython import LibraryInterface, DeviceType

...

Search for devices ...
devices = LibraryInterface.enumerate(DeviceType.All)

If at least one has been found, use the first one ...
if (len(devices) > 0):
 device = devices[0]

 # Open device, nothing can be done without doing this.
 device.open()

 # After some processing, the device can be resetted to its
 # power up condition.
 device.resetDevice()

 # Finalize device usage, this free's up the device, so it can be used
 # again, including other applications.
 device.close()

Description

The first lines in the example imports the two necessary classes the source unit.
In the application flow, enumeration must be always the first task when using the API. It
searches the system for known, not yet used devices and offers the caller a tuple of
device instances. The parameter that is used calling enumerate() of LibraryInterface
specifies which devices should be searched:
All known devices (DeviceType.All)
Device classes (e.g. DeviceType.Usb)

UG111 (v1.2) Sep 26, 2017 www.cesys.com 109

Python

Specific types (e.g. DeviceType.CeboLC)
We search for all devices in the example above. The returned list contains candidates of
type Device that can be used subsequently.
We use len() on the tuple to see if at least one device has been found. If a device has
been found, the if branch is entered, were we continue by using the first device.
The call to open() flags the device for use. Any new enumeration (before calling close()
on the same instance) will filter this instance. This is just a simple mechanism to prevent
double access to the same device.
After the device has been opened, it can be used in any way. Method resetDevice() is
shown here, because it has a superior role. It stops all active processing inside the
device and resets all configuration values to their startup condition. It is not necessary to
call it, but is a good way to reach a defined state i.e. in an error condition. It is implicitly
invoked when calling open().
At the end of the current scope, method close() is called to signal API and system that
the device is not used anymore. This is an important call, because leaving it in opened
state will prevent it from getting enumerated again.

Single Value I/O
This section describes simple single input and output of values. It continues the
example from section Basics, so an opened device instance is available. Single value
I/O is described in the user guide CEBO-LC in detail.

Read digital port #0 and write result to digital port #1 (mirror pins).
At first, we need references to both ports.
dp0 = device.getDigitalPorts()[0]
dp1 = device.getDigitalPorts()[1]

Configure port first, all bits of digital port #0 as input (default)
and all bits of digital port #1 as output.
dp1.setOutputEnableMask(0xff)

Read from #0 ...
value = dp0.read()

Write the value to #1 ...
dp1.write(value)

Now some analog I/O, do it without any additional local references.
Read single ended #0 input voltage ...
voltageValue = device.getSingleEndedInputs()[0].read()

UG111 (v1.2) Sep 26, 2017 www.cesys.com 110

http://dev.cesys.com/en/support/bedienungsanleitungen/cebo/usb_messbox_cebo_lc/data_acquisition/single_value_io.html

Python

Write value to analog output #1
device.getAnalogOutputs()[1].write(voltageValue)

Description

If you want work with device peripherals, get instances using the various component
access methods of class Device. If more then one method must be called, create a local
reference, this reduces the amount of code to write. After you have an instance,
invocations to its methods affects this specific peripheral.

The example outlines how to read all I/O's of digital port #0 and mirror the result on port
#1. The first requirement to accomplish this is to define the direction of the individual
I/O's. By default, all I/O's are configured to be inputs, so the example shows how to set
all I/O's on port #1 as output, calling setOutputEnableMask() on its reference. All bits
that are '1' in the specified mask signal the I/O to be an output. This is all you have to do
for configuration.

The mirroring step is quite easy, read() the value from the instance that represents port
#0 and store it in a local variable. The result is subsequently used calling write() on the
instance the represents port #1.

The second half of the example outlines how to access peripherals without local copies
or references. This requires fewer but longer lines of code but has no behavioral
difference. Choose which style you prefer on your own.

The example continues doing direct single value I/O using analog peripherals. Like the
digital port part, an input is mirrored to an output.

The call to read() returns the calibrated voltage value on this input as float. Calling
write() on the AnalogOutput instance that represents analog output #1 using the
returned voltage value will directly modify the real output on the device.

Single Frame Input
This section presents an example that samples a selection of inputs in a single process.
The difference to single value read is not that much on the coding side, but there's a

UG111 (v1.2) Sep 26, 2017 www.cesys.com 111

Python

large improvement when it comes to performance. Reading more than one input costs
only an insignificant higher amount of time in comparison to single I/O.
Configuration of the individual peripherals is exactly the same, so setting the I/O
direction if digital ports or set the input range on an analog input is almost identical.

Prepare and fill the list of inputs to read.
inputs = [
 device.getSingleEndedInputs()[0],
 device.getSingleEndedInputs()[1],
 device.getDifferentialInputs()[1],
 device.getDigitalPorts()[0],
 device.getDigitalPorts()[1],
 device.getCounters()[0]
]

Setup device with this selection.
device.setupInputFrame(inputs)

Read the values multiple times and write them to the console.
for _ in range(100):
 # Read all inputs into the instance of InputFrame.
 inFrame = device.readFrame()

 # Write results to the console.
 print(
 ("DigitalPort #0: %d" % inFrame.getDigitalPort(0)) + ", " +
 ("DigitalPort #1: %d" % inFrame.getDigitalPort(1)) + ", " +
 ("SingleEnded #0: %.2f" % inFrame.getSingleEnded(0)) + " V, " +
 ("SingleEnded #1: %.2f" % inFrame.getSingleEnded(1)) + " V, " +
 ("Differential #1: %.2f" % inFrame.getDifferential(1)) + " V, " +
 ("Counter #0: %d" % inFrame.getCounter(0)))

Description

The primary work for frame input I/O is to setup the device with the list of inputs that are
involved. An array which contains the inputs to sample is required.

The example does this in the upper part. It creates the array and add several inputs to
it:

• Single ended analog input #0 and #1

• Differential analog input #1

• Digital ports #0 and #1

• Counter #0

UG111 (v1.2) Sep 26, 2017 www.cesys.com 112

Python

This list is than used calling setupInputFrame(), which prepares the device with this
setup. This is active until:

• A call to resetDevice()

• The device is closed

• Or a new list is specified

In the subsequent loop, the specified inputs are sampled in every loop cycle using
method readFrame(). The call lasts until all inputs are sampled and returns the values
immediately in an instance of class InputFrame.

This instance holds all sampled values and offers methods to request them, which is
shown in the lower part of the example.

Single Frame Output
In this section, concurrent modification of outputs will be outlined. In comparison to
single value I/O, this technique is very efficient when working with more than one single
output. As you can see in the following example, using it is quite straightforward.

Write to analog out #1 and digital out #2 in one call.
Prepare and set output selection.
outputs = [
 device.getDigitalPorts()[2],
 device.getAnalogOutputs()[1]
]

Prepare device ...
device.setupOutputFrame(outputs)

Create instance of OutputFrame. There's no direct construction, as this
instance may vary between different device types.
outFrame = device.createOutputFrame()

Write it to hardware, modify contents in every looping.
for i in range(100):
 outFrame.setAnalogOutput(1, float(3 * sin(float(i) / 100)))
 outFrame.setDigitalPort(2, i)

 device.writeFrame(outFrame)

UG111 (v1.2) Sep 26, 2017 www.cesys.com 113

Python

Description

First of all, the example assumes that an opened instance of class Device is available,
as well as that DigitalPort #2 is configured to be output.

Similar to the other direction, the device must be set up with a list of outputs. This setup
is active until:

• A call to resetDevice()

• The device is closed

• Or a new list is set up

An array that contains the outputs to set is required. In the upper part of the example,
you can see the creation of this array, adding outputs DigitalPort #2 and AnalogOutput
#1 to it and activate the setup using setupOutputFrame().

The subsequent call to createOutputFrame() creates an instance of type OutputFrame,
which fits to the device metrics. There's no other way to create this type.

In the loop below, every cycle modifies the values of the outputs specified during setup.
This does not do anything other than storing the values inside the frame. The active
modification of the outputs is done using writeFrame(), which transfers the values to the
respective peripherals.

Multi Frame Input
This section describes how to read many frames at once, a very useful feature when
you want sample inputs at a constant frequency or using an external trigger. The API
offers very handy methods. The most problematic thing is to choose the right start
method including its parameters.
The example below samples five different inputs at a constant rate of 300 Hz, 20 x 25
frames, completely cached inside the device buffer.

Construct selection that contains inputs to read from.
inputs = [
 device.getSingleEndedInputs()[0],

UG111 (v1.2) Sep 26, 2017 www.cesys.com 114

Python

 device.getSingleEndedInputs()[1],
 device.getDifferentialInputs()[1],
 device.getDigitalPorts()[0],
 device.getDigitalPorts()[1]
]

Prepare device with this collection ...
device.setupInputFrame(inputs)

Start sampling ...
device.startBufferedDataAcquisition(300, 20 * 25, False)

Read 20 x 25 frames using blocked read,
this function returns after *all* (25) requested frames are collected.
for _ in range(20):
 # Read 25 frames ...
 frames = device.readBlocking(25)

 # Write out the 1st one.
 inFrame = frames[0]
 print(
 ("DigitalPort #0: %d" % inFrame.getDigitalPort(0)) + ", " +
 ("DigitalPort #1: %d" % inFrame.getDigitalPort(1)) + ", " +
 ("SingleEnded #0: %.2f" % inFrame.getSingleEnded(0)) + " V, " +
 ("SingleEnded #1: %.2f" % inFrame.getSingleEnded(1)) + " V, " +
 ("Differential #1: %.2f" % inFrame.getDifferential(1)))

Stop the DAQ.
device.stopDataAcquisition()

Description

The first lines in this example are similar to single frame example. The device is set up
to sample the specified inputs into a single call. Single ended input #0 and #1,
differential input #1 and digital ports #0 and #1 are used here.

The real data acquisition is than started calling startBufferedDataAcquition(). Choosing
this method to start up, combined with the used parameters means the following:

• Data has to be completely stored in the device memory (buffered).

• Sampling is done using hardware timed capture at 300 Hz.

• The number of frames to capture is 20 x 25 = 500.

• No external trigger is necessary to initiate the process.

This method does not only configure the DAQ process, but start it as well. In the case of

UG111 (v1.2) Sep 26, 2017 www.cesys.com 115

Python

buffered mode, this is really uncritical. If you require continuous mode, a buffer overrun
may occur shortly after starting the DAQ, so it is very important to either:

• Start to read the sampled frames immediately, as shown in the example.

• Use a second thread to read the frames, start this thread before the DAQ is started.

The example continues with a for loop where every cycle reads 25 frames and outputs
the sampled values of the first frame in this block. The used method readBlocking()
returns after the given amount of frames has been read and stalls the thread up to this
point. Use readBlocking() with care, because it has two downsides:

• It blocks the access to the whole API due to internal thread locking mechanisms.

• If the specified amount of frames is too small, especially at higher frame rates,
buffer overruns on the device side will occur, as the call and transfer overhead is
too high.

It is a very convenient way to read a defined number of frames. The alternative is the
use readNonBlocking(), which returns immediately with all captured frames at the
moment of calling.

Both read methods return the tuple of captured frames. The example uses the first
frame of this block (which is guaranteed to contain 25 frames in the example), and
output the sampled values of all specified inputs to the console.
At the end of the example, DAQ is stopped using stopDataAcquisition().

Counter
The example below shows how to use a counter. To allow this using software, a wired
connection between IO-0 and CNT is necessary. IO-0 is used to generate the events
that the counter should count.

Create local copies, this shortens the source.
dp0 = device.getDigitalPorts()[0]
cnt = device.getCounters()[0]

Set IO-0 as output.
dp0.setOutputEnableMask(0x01)

Enable the counter.
cnt.setEnabled(True)

UG111 (v1.2) Sep 26, 2017 www.cesys.com 116

Python

Check the counters current value.
print("Counter before starting: %d" % cnt.read())

Pulse IO-0 3 times.
for _ in range(3):
 dp0.write(0x01)
 dp0.write(0x00)

Check the counters current value.
print("Counter should be 3: %d" % cnt.read())

Reset and ...
cnt.reset()

... disable the counter.
cnt.setEnabled(False)

Check the counters current value.
print("Counter should be 0: %d" % cnt.read())

Pulse IO-0 3 times, the counter should ignore these pulses.
for _ in range(3):
 dp0.write(0x01)
 dp0.write(0x00)

Check the counters current value.
print("Counter should still be 0: %d" % cnt.read())

Description

Like most of the previous examples, an instance of class Device is required. This can
be retrieved using the procedure described here. To demonstrate the counter without
external peripherals, the software controls the events for the counter as well. This
extends the example to around twice its size, but its still easy to understand.

To reduce the amount of code, dp0 and cnt are constructed as local copies of both the
first DigitalPort and the Counter.

The LSB of digital port #0 represents IO-0. To modify IO-0 via software, the example
continues to set this I/O as output using method setOutputEnableMask().

Counters are disabled by default, so the next required task is to enable it, otherwise no
event will be detected. The example does this by calling setEnabled() of the Counter

UG111 (v1.2) Sep 26, 2017 www.cesys.com 117

Python

instance.

The first counter value that is printed out will be zero, which is the default value after
startup or reset.

The counter reacts on every rising edge. The example shows this by pulsing IO-0 three
times, setting its level high and than low in every loop cycle. The result is than printed to
the console. It is expected to be three, based on the pulses in the previous loop (If not,
verify the wired connection between IO-0 and CNT).

The value of the counter is than set to zero calling its reset() method. In
addition, setEnabled() deactivates the counter to any event.

The remaining example code outlines this, by pulsing IO-0 three times again, but the
console output shows that now flanks have been counted in this state.

Trigger
The following example is much longer than the previous, but outlines various new
things:

• Working with multiple devices.

• Use different multi frame modes.

• Show how to use triggers in input and output mode.

You will need two devices for this example to run, as both devices are chained together
using triggers. The first device acts as master, while the second device is the slave.
Every time, the master samples a frame, an output trigger is generated, while the slave
captures its frame if this trigger has been raised.

Devices must be connected to each other using two wires. Ground (GND) to ground
and trigger (TRG) to trigger.

TIP #1: This example can easily be extended to support more than one slave, you only
have to set up each slave the same way as the slave in the example.

TIP #2: At high bandwidth, it may be necessary to put the individual readNonBlocking()

UG111 (v1.2) Sep 26, 2017 www.cesys.com 118

Python

calls to separate threads. Otherwise reading the data from one device may last as long
as the device side buffer on the second device will need to overflow.

The description is located below the example.

def dumpFrames(device, frames):
 """
 Write frames to console.
 device: Device string.
 frames: Frame to dump.
 """
 for f in frames:
 print("%s: se#0: %.2f V, dp#0: %d" % (
 device, f.getSingleEnded(0), f.getDigitalPort(0)))

def runDataAcquisition(master, slave):
 """
 Start DAQ, read frames and output the results.
 master: Master device.
 slave: Slave device.
 """
 # The slave must be started first, as it reacts on the master's
 # trigger. Continuous DAQ is used. Timed using an external trigger.
 slave.startContinuousExternalTimedDataAcquisition()

 # The master uses hardware timed DAQ, continuous at 50 Hz.
 # The 'false' here signals that the process should start immediately.
 master.startContinuousDataAcquisition(50, False)

 # The example reads at least 10 frames from
 # both devices and subsequently output the samples.
 masterFrames, slaveFrames = 0, 0
 while (masterFrames < 10 or slaveFrames < 10):
 # Start by reading frames from master,
 # output it and increment counter.
 frames = master.readNonBlocking()
 dumpFrames("master", frames)
 masterFrames += len(frames)

 # Do the same with the slave.
 frames = slave.readNonBlocking()
 dumpFrames("slave", frames)
 slaveFrames += len(frames)

 # Don't poll to frequent, this would fully utilize one core.
 time.sleep(0.001)

 # Finished, gracefully stop DAQ.
 slave.stopDataAcquisition()

UG111 (v1.2) Sep 26, 2017 www.cesys.com 119

Python

 master.stopDataAcquisition()

def configure(master, slave):
 """
 Both devices are fully configured here.
 master: Master device.
 slave: Slave device.
 """
 # The trigger for the master must be set to alternating output.
 master.getTriggers()[0].setConfig(
 Trigger.TriggerConfig.OutputAlternating)

 # The slave's trigger must be set to alternating as well.
 slave.getTriggers()[0].setConfig(
 Trigger.TriggerConfig.InputAlternating)

 # Both devices now gets configured to the same input frame layout.
 master.setupInputFrame([
 master.getSingleEndedInputs()[0],
 master.getDigitalPorts()[0]
])

 # ... slave
 slave.setupInputFrame([
 slave.getSingleEndedInputs()[0],
 slave.getDigitalPorts()[0]
])

def main():
 """
 The examples main method.
 """
 try:
 # Search for devices ...
 devices = LibraryInterface.enumerate(DeviceType.All)
 if (len(devices) != 2):
 print("Exactly two devices are required.")
 return

 # As both devices can act as master,
 # we simply use the first one for this role.
 master = devices[0]
 master.open()
 print("Master: " + master.getSerialNumber() +
 "@" + master.getIdentifier())

 # ... and the second as slave.
 slave = devices[1]
 slave.open()
 print("Slave: " + slave.getSerialNumber() +
 "@" + slave.getIdentifier())

UG111 (v1.2) Sep 26, 2017 www.cesys.com 120

Python

 # Configure both master and slave ...
 configure(master, slave)

 # ... and do the DAQ.
 runDataAcquisition(master, slave)

 # Close both.
 master.close()
 slave.close()
 except Exception as e:
 print(e)

if (__name__ == "__main__"):
 main()

Description

Read the example bottom up, starting in the runExample() function. Nothing really new
in comparison to the previous examples, except that two devices are used concurrently.
Both devices gets opened and a short information about master and slave is printed to
the console.

What follows is the configuration, which is shown in function configure(). Trigger #0 of
the master device is set to output, alternating. This means, every time, the master
captures a frame, its first trigger toggles the level.

Trigger #0 of the slave is configured to work as input, alternating as well. So the slave
captures a frame if its first trigger detects that the level has been toggled.

That's all for the trigger configuration. Function configure() completes the process by
setting up a frame using single ended input #0 and digital port #0 as described in
detail the user guide CEBO-LC.

Returned to runExample(), method runDataAcquisition() is invoked, which shows
how data from both master and slave is read. The most important part here is, how both
DAQ processes are started. The slave is started first, otherwise he may miss one or
more events. The slave is set to sample frames every time a trigger has been detected,
without any count limits. This is done calling
startContinuousExternalTimedDataAcquisition().

UG111 (v1.2) Sep 26, 2017 www.cesys.com 121

Python

The master's DAQ is than started calling startContinuousDataAcquisition(), which
means, no frame count limitation at a specific frequency. The example uses a very low
frequency, 50 Hz, and starts immediately (By using false for
parameter externalStarted).

At runtime, the master will than start to sample frames at the given 50 Hz, toggle
its Trigger every time, while the slave captures a frame every time this event is received
at his input trigger pin. Both capture frames synchronously.

The example continues by reading frames from both devices one after another until
both have returned at least 10 frames. Captured values are written to the console using
function dumpFrames(). The loop contains a 1 ms sleep, otherwise the usage of one
CPU core would go to 100%, which is never a good idea.

After the frames have been read, DAQ is stopped on both devices,
calling stopDataAcquisition(). The program returns to runExample() and close() both
devices.

Info
This section simply outlines what information you can get from the API about the API
itself, the device and its peripherals.

Put out some device specific information.
print("Device type: %s" % device.getDeviceType().getName())
print("USB base ver: %s" % LibraryInterface.getUsbBaseVersion())
print("API vers: %s" % LibraryInterface.getApiVersion())
print("Firmware ver: %s" % device.getFirmwareVersion())
print("Identifier: %s" % device.getIdentifier())
print("Serial number: %s" % device.getSerialNumber())
print("Temperature: %.2f" % device.getTemperature())

Get the real current of the reference current sources.
for source in device.getCurrentSources():
 print("Reference current of %s: %.2f uA" % (
 source.getName(),
 source.getReferenceCurrent()))

Retrieve information about single ended input #0.

UG111 (v1.2) Sep 26, 2017 www.cesys.com 122

Python

This works on all analog inputs and outputs.
se0 = device.getSingleEndedInputs()[0]
print("Info for single ended input %s:" % se0.getName())
print(" Min. ICD: %d us" % se0.getMinInterChannelDelay())
print(" Current range: %.2f V to %.2f V" % (
 se0.getRange().getMinValue(),
 se0.getRange().getMaxValue()))
print(" Supported ranges:")
for i in range(len(se0.getSupportedRanges())):
 rng = se0.getSupportedRanges()[i]
 print(" Range #%d range: %.2f V to %.2f V, Def. ICD: %d us" % (
 i,
 rng.getMinValue(),
 rng.getMaxValue(),
 se0.getDefaultInterChannelDelay(rng)))

Get info for digital port #1.
dp1 = device.getDigitalPorts()[1]
print("Info for digital port %s:" % dp1.getName())
print(" Count of I/O's: %d" % dp1.getIoCount())
for i in range(dp1.getIoCount()):
 print(" I/O #%d: %s" % (i, dp1.getIoName(i)))

Description

As most of the previous examples, this assumes an opened device as well. How to do
this is described here.

The block in the upper part of the example writes any API or device specific information
to the console. The printed information is self-explanatory.

The first loop iterates over all CurrentSources of the connected device. For every
source, its real current value is printed out. These values were determined during
device calibration.

In the following block, information about single ended input #0 is printed out, which is
the active range setting, as well as all ranges that are valid for this port. All ranges
report their lower and upper bound using methods getMinValue() and getMaxValue().
This can be done for every AnalogInput and AnalogOutput.

The last part of the example prints information about digital port #1. The value retrieved
by getIoCount() is the number of I/O's that can be accessed by this DigitalPort. This

UG111 (v1.2) Sep 26, 2017 www.cesys.com 123

Python

may vary between the individual ports a device has. The names of all its single I/O's are
printed as well.

Class Reference
The class reference is a complete but short overview of all classes and their methods
used in the Python API. It does not outline how the components have to be used.

The sections parallel to this topic show many practical examples and should be the first
you have to read to understand and use the API. A good starting point is this topic.

DeviceType

This class is an enumeration of device types and device classes. Its static instances can
be used to control the enumeration process. Besides that, each device reports its class
using this type in method getDeviceType().

All
This DeviceType includes all known devices, independent which bus type is used. In the
current stage, this equals the following instance, Usb.

Usb
By using this instance of type DeviceType in the enumeration process, all known
devices connected via USB are reported.

CeboLC
This instance of type DeviceType must be specified if CEBO LC devices should be
searched. In addition, getDeviceType() of Device returns this if the device is of this type.

CeboStick
This instance must be specified if CEBO STICK devices should be searched. In
addition, getDeviceType() of Device returns this if the device is of this type.

getName()
Returns the name as string, e.g. "CeboLC" for the CeboLC instance.

UG111 (v1.2) Sep 26, 2017 www.cesys.com 124

Python

AnalogInput

This class is the host side interface to any analog input, so you have to use its methods
to request or modify the peripheral that this instance is assigned to. Get an instance of
this class by calling either getSingleEndedInputs() or getDifferentialInputs() of the
corresponding Device instance.

getSupportedRanges()
Returns the Ranges this input supports as tuple. You can use each of these calling
setParameters().

getDefaultInterChannelDelay(range)
Return the default interchannel delay at the specified Range in microseconds.

getMinInterChannelDelay()
Return the minimal interchannel delay for this input in microseconds.

setParameters(range[, interChannelDelay])
Set Range for this input. If specified, the interchannel delay in microseconds is adjusted
manually, otherwise the default for this range is used. The returned value is the
interchannel delay that is really used (as not all specified values can be handled by the
hardware).

getRange()
Returns active Range.

getInterChannelDelay()

Returns active interchannel delay in microseconds.

read()
Returns voltage as floating point value from input directly (more: user guide CEBO-LC,
data acquisition, single value I/O).

getName()
Returns the name of the input.

UG111 (v1.2) Sep 26, 2017 www.cesys.com 125

Python

AnalogOutput

This class represents an analog output. You can get an instance of this class calling
getAnalogOutputs() from the corresponding Device.

getSupportedRanges()
Returns the list of Ranges this input supports as tuple. You can use each of these
calling setParameters().

setParameters(range)
Sets the Range on the analog output.

getRange()
Returns active Range.

write(value)
Directly set the specified voltage value on the output.

getName()
Returns the name of the output.

DigitalPort

This class is the interface to work with digital ports. Retrieve instances calling
getDigitalPorts() of the respective Device.

setOutputEnableMask(mask)
Set bitwise mask that defines which of the I/O's on the specified port are input and
output. A bit of value 1 defines the specific I/O as output, e.g. mask = 0x03 means that
I/O 0 and 1 are set to output, while I/O 2 to n are inputs.

getIoCount()
Returns the count of I/O's of the specific port.

read()
Read the state of the I/O's of the port.

UG111 (v1.2) Sep 26, 2017 www.cesys.com 126

Python

write(value)
Modify the output I/O's of the specified port.

getName()
Returns the name of the port.

getIoName(io)
Returns the name of the I/O as specified by parameter io. The range of io is 0 <= io <
getIoCount().

Counter

Interface class to counters inside the device. Class instances can be retrieved calling
getCounters() of the specific Device.

reset()
Reset the counter to value 0.

setEnabled(enabled)
Enable or disable the counter using a boolean expression. A disabled counter stays at
the last value.

isEnabled()
Return whether the counter is enabled or not.

setConfig(counterConfig)
Defines the counter behavior by using one of the constants specified in
Counter.CounterConfig, listed in the following table.

getConfig()
Returns the current setup. One of the constants in enumerator

Counter.CounterConfig.
CounterConfig

UG111 (v1.2) Sep 26, 2017 www.cesys.com 127

Python

Edge Comment

RisingEdge Counter event is rising edge.

FallingEdge Counter event is falling edge

Alternating Counter event is both rising and falling edges.

read()
Read the current value of the counter.

getName()
Returns the name of the counter.

Trigger

Class that represents a trigger inside the device. Instances can be retrieved by calling
getTriggers() of the respective Device.

setEnabled(enabled)
Enable or disable the trigger using a boolean expression.

isEnabled()
Return whether the trigger is enabled or not.

setConfig(triggerConfig)
Defines the trigger behavior by using one of the constants specified in
Trigger.TriggerConfig, listed in the following table

getConfig()
Returns the current setup. One of the constants in enumerator Trigger.TriggerConfig.

TriggerConfig

Pulse or Edge Circumstances

OutputPulse Trigger is output. Every trigger-event generates a positive pulse.

OutputAlternating Trigger is output. Every trigger-event toggles the level.

InputRisingEdge Trigger is input, reacts on a rising edge.

InputFallingEdge Trigger is input, reacts on a falling edge.

UG111 (v1.2) Sep 26, 2017 www.cesys.com 128

Python

Pulse or Edge Circumstances

InputAlternating Trigger is input, reacts on rising and falling edge.

getName()
Returns the name of the trigger.

Range

Use when handling range settings. Valid setting for an AnalogInput or AnalogOutput can
be retrieved using their getSupportedRanges() method.

getMinValue()
Returns the lower voltage of the specific range as floating point.

getMaxValue()
Returns the upper voltage of the specific range as floating point.

Led

Interface to the LED's on the board. Instances are accessed calling getLeds() of the
corresponding Device.

setEnabled(enabled)
Enable or disable the LED using a boolean expression.

getName()
Returns the name of the LED.

CurrentSource

Class that represents the interface to the Fixed Current Outputs. Instances can be
retrieved using getCurrentSources() of the respective Device.

getReferenceCurrent()
Returns the actual value of the Fixed Current Output, which is determined during
manufacturing process and stored in onboard flash. The returned value is given in micro
ampere.

UG111 (v1.2) Sep 26, 2017 www.cesys.com 129

Python

getName()

Returns the name of the current source.

InputFrame

The input frame is a data class which stores measured samples from all inputs a device
has (and which meet the frame concept). All samples inside a single frame are captured
in a very short time span (which depends on the underlying device). Only values that
have been selected using setupInputFrame() before sampling the frame are valid, the
other are set to 0 by default.

getSingleEnded(index)
Return the voltage value of single ended analog input using the specified index at the
moment the frame was sampled. This value is calibrated.

getDifferential(index)
Return the voltage value of differential analog input using the specified index at the
moment the frame was sampled. This value is calibrated.

getDigitalPort(index)
Return the I/O state of the digital port indicated by the given index at the moment the
frame has been sampled.

getTrigger(index)
Return the state of the Trigger as specified by the given index in the moment the frame
has been sampled.

getCounter(index)
Return the value of the Counter as specified by the given index.

OutputFrame

This class stores all values the should be set to the outputs as specified
using setupOutputFrame(). Calling one of its methods does not affect the hardware.
This is done when calling writeFrame(). An OutputFrame instance can't be created
directly, as its metrics depends on the underlying device. The instance can retrieved

UG111 (v1.2) Sep 26, 2017 www.cesys.com 130

Python

calling createOutputFrame() of the device instance that should be used.

setDigitalPort(index, value)
Set the bit mask for the DigitalPort as specified using index. Only bits set to output
using setOutputEnableMask() are affected.

setAnalogOutput(index, value)
Define the voltage value that should be set to the AnalogOutput as specified by the
given index. The value will be calibrated before it is active.

Device

This is the primary class of the framework. Each instance corresponds to one physical
device. The class is not intended to be instanced directly. Use the method enumerate()
of the class LibraryInterface to access instances. Many of the methods are related to
the device itself. Besides that, instances to all device peripherals can be accessed.

open()
This method must be called before doing anything with the device. Internally a
communication to the device is constructed and several initialization is done. Various
device and firmware specific constants are read and method resetDevice() is called. To
guarantee compatibility between API and device, if the major number of the device
firmware is higher than the major number of the API, open() will fail, a newer version of
the API must be used with this device.

close()
This closes the connection to the device, frees all internal resources and allows the
device to be used by others (in the application instance and in different applications).
Calling close will never throw an exception, it will always fail silently.

resetDevice()
Calling this will stop any hardware controlled processing and reset the device to its
power up settings. This is usually necessary if errors occur (Except logic or
communication errors). Invoking this method in a multithreaded context should be done
with extra care.

UG111 (v1.2) Sep 26, 2017 www.cesys.com 131

Python

resetPeripherals(mask)
Resets specific peripherals on the device side. Parameter mask specifies which
elements using a bit mask. The bit mask must be constructed using the following flags,
which will be enhanced in future versions:

int Device.FlagResetInputFifo Clears the FIFO used during data acquisition and its
error flags.

getIdentifier()
This returns a unique identifier to the device which is constructed using the physical
connection properties. It is guaranteed to be unique at runtime, as well as constant
between reboots of the operating system (except updates to the operating system
change the behavior how physical properties are enumerated).
Be aware: Plugging a device to a different location (e.g. different USB port) will change
this specifier, it is not device dependent. Use getSerialNumber() in this case.
This method can be called in front of invoking open().

getDeviceType()
Returns the specific type of the device that is bound to the instance. This is one of class
DeviceType static members.
This method can be called before invoking open().

getFirmwareVersion()
Returns the firmware version encoded as string, e.g. "1.0".

getSerialNumber()
Returns the device serial number as string. This string is unique for each device.

getTemperature()
Returns current temperature in °C of the device.

void setWatchdogTimeout(timeout)
Sets the watchdog timeout in 250ms steps. If enabled, the device reboots if no data
transfer has been done in the given time frame. Default value is 0xffffffff, which disables
this feature.

getWatchdogTimeout()

UG111 (v1.2) Sep 26, 2017 www.cesys.com 132

Python

Read back current watchdog timeout value.

calculateMaxBufferedInputFrames()
Depending on the specified inputs the device site buffer can store a limited amount of
frames. This method calculates the count of frames that will fit into this buffer using the
current frame setup, which is last set using setupInputFrame(). Modifying the frame
setup invalidates this value and must be updated invoking this method again. This value
is primary intended to be used in context with startBufferedDataAcquisition().

setupInputFrame(inputs)
When doing any form of frame based data acquisition, which is described in the user
guide CEBO-LC, this method must be used to select the inputs to be read. There's no
limit which inputs can be selected, but every input can only be specified once. This
method can only be called if no multi frame based data acquisition is active.
Any subsequent frame based call is affected by this setup.
The input list can contain any instance of AnalogInput, DigitalPort, Counter or Trigger.

startBufferedDataAcquisition(frameRate, frameCount, externalStarted)
Starts a buffered data acquisition at the specified frameRate for exactly frameCount
frames. If externalStarted is true, the acquisition is started at the moment an external
trigger event has been detected, immediately otherwise. Parameter frameRate must be
equal or smaller than the value reported by calculateMaxBufferedInputFrames(). The
returned value is the frame rate that is really used, as not every possible frame rate can
be handled by the device. This value is as near as possible to the specified frame rate.
Detailed description for this can be found in the user guide CEBO-LC.

startBufferedExternalTimedDataAcquisition(frameCount)
Very similar to the method above, except that no frame rate is used the sample frame,
but every time an external trigger has been detected one single frame is sampled.
Acquisition is automatically stopped after the specified amount of frames has been
sampled. Detailed description for this can be found in the user guide CEBO-LC.

startContinuousDataAcquisition(frameRate, externalStarted)
Starts a data acquisition without frame limit. The host must read the sampled data as
fast as possible, otherwise buffer overflow is signaled and the process has been failed.

UG111 (v1.2) Sep 26, 2017 www.cesys.com 133

Python

Frames are sampled at the specified frameRate. If externalStarted is true, sampling
starts at the first detected trigger event, immediately otherwise. The return value is the
frame rate that is really used, as not every possible rates are possible.
In a multithreaded context, it is advised to start reading frames before calling this
method.
More details about data acquisition can be found in the user guide CEBO-LC.

startContinuousExternalTimedDataAcquisition()
Similar to the method above, but instead of a fixed frame rate, frames are sampled for
every detected trigger. Detailed information about this can be found in the user guide
CEBO-LC.

stopDataAcquisition()
Stops a currently active data acquisition. The device buffer is not modified calling this,
so unread data can be fetched subsequently.

readBlocking(frameCount)
When doing multi frame data acquisition, this is one method to read the sampled frames
from device to host. This version will block the current thread until the specified amount
of frames has been read, there's no timeout. After the call returns without an exception,
the returned tuple contains exactly the specified amount of InputFrames. The alternative
to this call is described below.

readNonBlocking()
This method is similar to the one above, except that it always returns immediately, while
trying to read as much frames as possible. The returned tuple contains all sampled
InputFrames since the start of the data acquisition or the last frame read. Especially for
high data amounts, this method should be called cyclically without to high delays.

readFrame()
Read single frame as set up calling setupInputFrame() and return immediately. This
cannot be called if multi frame data acquisition is active.

setupOutputFrame(outputs)
Specifies which outputs are involved in the next frame output process. There's no limit
of the specified outputs, but no single instance can be used more than once. Valid

UG111 (v1.2) Sep 26, 2017 www.cesys.com 134

Python

outputs that can be added to the list are AnalogOutput and DigitalPort.

writeFrame(frame)
Set all outputs that have been selected using setupOutputFrame() in a single call. Data
to set on the respective outputs must be set in the given OutputFrame. The frame must
be constructed using method createOutputFrame() of the same device instance were it
is used.

createOutputFrame()
Create an OutputFrame instance that fits to the device metrics from which instance the
method is called. The frame can than be filled with data and used calling writeFrame()
of the same device instance.

getSingleEndedInputs()
Return tuple of all single ended inputs.

getDifferentialInputs()
Return tuple of differential analog inputs.
getAnalogOutputs()
Return tuple of the analog outputs

getDigitalPorts()
Return tuple of digital ports.

getCounters()
Return tuple of counters.

getTriggers()
Return tuple of triggers.

getCurrentSources()
Return tuple of current sources.

getLeds()
Return tuple of LED's.

UG111 (v1.2) Sep 26, 2017 www.cesys.com 135

Python

LibraryInterface

This class contains static functionality only. Its responsibility is to serve as interface to
methods that are not bound to any device.

getApiVersion()
Report the version number of the underlying CeboMsr API string, i.e. "1.0".

getUsbBaseVersion()
Return the version number of the system interface USB layer string, i.e. "1.0".

enumerate(type)
The specified type parameter must be one of class DeviceType members. The system
is than scanned for known devices and subsequently filtered to meet the specified type.
Devices that are already opened were skipped too. The returned list contains all
candidates that are ready for use.
For each instance that should be used, open() must be called.
Starting a new enumeration invalidates the list from the previous invocation.

UG111 (v1.2) Sep 26, 2017 www.cesys.com 136

Copyright Notice

Copyright Notice

This file contains confidential and proprietary information of Cesys GmbH and is protected under
international copyright and other intellectual property laws.

Disclaimer

This disclaimer is not a license and does not grant any rights to the materials distributed herewith.
Except as otherwise provided in a valid license issued to you by Cesys, and to the maximum extent
permitted by applicable law:

(1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND WITH ALL FAULTS, AND CESYS
HEREBY DISCLAIMS ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR
STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-
INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE;

and

(2) Cesys shall not be liable (whether in contract or tort, including negligence, or under any other
theory of liability) for any loss or damage of any kind or nature related to, arising under or in
connection with these materials, including for any direct, or any indirect, special, incidental, or
consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or
damage suffered as a result of any action brought by a third party) even if such damage or loss was
reasonably foreseeable or Cesys had been advised of the possibility of the same.

CRITICAL APPLICATIONS

CESYS products are not designed or intended to be fail-safe, or for use in any application requiring
fail-safe performance, such as life-support or safety devices or systems, Class III medical devices,
nuclear facilities, applications related to the deployment of airbags, or any other applications that
could lead to death, personal injury, or severe property or environmental damage (individually and
collectively, "Critical Applications"). Customer assumes the sole risk and liability of any use of Cesys
products in Critical Applications, subject only to applicable laws and regulations governing limitations
on product liability.

THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS PART OF THIS FILE AT
ALL TIMES.

CESYS Gesellschaft für angewandte Mikroelektronik mbH
Zeppelinstrasse 6a
D - 91074 Herzogenaurach
Germany

UG111 (v1.2) Sep 26, 2017 www.cesys.com 137

Revision history

Revision history

V1.0 Initial release.

V1.1 April 28, 2014 Layout, Header, Footer modified

V1.2 Sep 26, 2017 LabView & ProfiLab removed. WatchDog functionality added

UG111 (v1.2) Sep 26, 2017 www.cesys.com 138

Table of contents

Table of contents

Programming Interface..2
API Stack...2

Thread safety...2

Application flow..3

.NET...4
Compatibility..4

Usage...4

Design Difference...5

Error Handling..5

Basics...6
Description...6

Single Value I/O...8
Description...8

Single Frame Input...9
Description...10

Single Frame Output...10
Description...11

Multi Frame Input...12
Description...13

Counter...14
Description...15

Trigger...16
Description...19

Info...20
Description...21

Class Reference..22
Interfaces...22
DeviceType...22
AnalogInput..23
AnalogOutput..24
DigitalPort..25
Counter..25
Trigger...26
Range..27
Led..27
CurrentSource...27
InputFrame...28
OutputFrame...28

UG111 (v1.2) Sep 26, 2017 www.cesys.com 139

Table of contents

Device...29
LibraryInterface...34

C++...35
Compatibility..35

Namespace..35

Error handling..36

Basics..36
Description...37

Single Value I/O..38
Description...39

Single Frame Input...40
Description...40

Single Frame Output...41
Description...42

Multi Frame Input...42
Description...43

Counter...44
Description...45

Trigger...46
Description...49

Info...50
Description...51

Class Reference..51
Simple Types...52
DeviceType...53
AnalogInput..54
AnalogOutput..55
DigitalPort..56
Counter..57
Trigger...58
Range..58
Led..59
CurrentSource...59
InputFrame...59
OutputFrame...60
Device...61
LibraryInterface...66

Java..67
Compatibility..67

External Dependencies..67

Error handling..67

Eclipse Project Setup...68

UG111 (v1.2) Sep 26, 2017 www.cesys.com 140

Table of contents

Basics..76
Description...76

Single Value I/O..78
Description...79

Single Frame Input...80
Description...80

Single Frame Output...82
Description...82

Multi Frame Input...83
Description...84

Counter...85
Description...86

Trigger...87
Description...90

Info...91
Description...92

Class Reference..92
Interfaces...93
DeviceType...93
AnalogInput..94
AnalogOutput..95
DigitalPort..95
Counter..97
Trigger...98
Range..99
Led..99
CurrentSource...99
InputFrame...100
OutputFrame...101
Device..101
LibraryInterface...106

Python..108
Compatibility..108

External Dependencies...108

Error Handling..108

Basics..109
Description..109

Single Value I/O..110
Description..111

Single Frame Input..111
Description..112

Single Frame Output..113
Description..114

UG111 (v1.2) Sep 26, 2017 www.cesys.com 141

Table of contents

Multi Frame Input..114
Description..115

Counter...116
Description..117

Trigger...118
Description..121

Info...122
Description..123

Class Reference..124
DeviceType..124
AnalogInput..125
AnalogOutput..126
DigitalPort...126
Counter..127
Trigger...128
Range..129
Led..129
CurrentSource...129
InputFrame...130
OutputFrame...130
Device..131
LibraryInterface...136

Copyright Notice...137

Disclaimer..137

Revision history..138

UG111 (v1.2) Sep 26, 2017 www.cesys.com 142

	Programming Interface
	API Stack
	Thread safety
	Application flow

	.NET
	Compatibility
	Usage
	Design Difference
	Error Handling
	Basics
	Description

	Single Value I/O
	Description

	Single Frame Input
	Description

	Single Frame Output
	Description

	Multi Frame Input
	Description

	Counter
	Description

	Trigger
	Description

	Info
	Description

	Class Reference
	Interfaces
	DeviceType
	AnalogInput
	AnalogOutput
	DigitalPort
	Counter
	Trigger
	Range
	Led
	CurrentSource
	InputFrame
	OutputFrame
	Device
	LibraryInterface

	C++
	Compatibility
	Namespace
	Error handling
	Basics
	Description

	Single Value I/O
	Description

	Single Frame Input
	Description

	Single Frame Output
	Description

	Multi Frame Input
	Description

	Counter
	Description

	Trigger
	Description

	Info
	Description

	Class Reference
	Simple Types
	DeviceType
	AnalogInput
	AnalogOutput
	DigitalPort
	Counter
	Trigger
	Range
	Led
	CurrentSource
	InputFrame
	OutputFrame
	Device
	LibraryInterface

	Java
	Compatibility
	External Dependencies
	Error handling
	Eclipse Project Setup
	Basics
	Description

	Single Value I/O
	Description

	Single Frame Input
	Description

	Single Frame Output
	Description

	Multi Frame Input
	Description

	Counter
	Description

	Trigger
	Description

	Info
	Description

	Class Reference
	Interfaces
	DeviceType
	AnalogInput
	AnalogOutput
	DigitalPort
	Counter
	Trigger
	Range
	Led
	CurrentSource
	InputFrame
	OutputFrame
	Device
	LibraryInterface

	Python
	Compatibility
	External Dependencies
	Error Handling
	Basics
	Description

	Single Value I/O
	Description

	Single Frame Input
	Description

	Single Frame Output
	Description

	Multi Frame Input
	Description

	Counter
	Description

	Trigger
	Description

	Info
	Description

	Class Reference
	DeviceType
	AnalogInput
	AnalogOutput
	DigitalPort
	Counter
	Trigger
	Range
	Led
	CurrentSource
	InputFrame
	OutputFrame
	Device
	LibraryInterface

	Copyright Notice
	Disclaimer
	Revision history
	Table of contents

